K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 4 2020

A B C O I M

1.Vì đường kính của (O) là 10cm

\(\Rightarrow\) Bán kính của (O) là  \(R=\frac{10}{2}=5\)

\(\Rightarrow d\left(O,d\right)=3< R=5\)

\(\Rightarrow d\left(O\right)\)cắt nhau tại 2 điểm phân biệt

2 . Kẻ \(OI\perp AB\Rightarrow I\) là trung điểm AB

Vì \(OI\perp AB\Rightarrow OI=3\Rightarrow AI^2=OA^2-0I^2=5^2-3^2=16\)

\(\Rightarrow AI=4\Rightarrow AB=2AI=8\) vì I là trung điểm AB

3.Vì O, I là trung điểm AC,AB

=> OI là đường trung bình \(\Delta ABC\Rightarrow BC=2OI=6\)

4 . Vì AC là đường kính của (O) 

\(\Rightarrow CB\perp AB\Rightarrow CB\perp AM\)

Mà \(CA\perp CM\Rightarrow CB^2=AB.BM\)

\(\Rightarrow BM=\frac{BC^2}{AB}=\frac{6^2}{8}=\frac{9}{2}\)

 
23 tháng 8 2021

a, Kẻ OH \(\perp\)AB 

=> OH là đường trung tuyến 

=> \(AH=\frac{AB}{2}=\frac{24}{2}=12\)cm 

Theo định lí Pytago tam giác OHA vuông tại H 

\(OH=\sqrt{AO^2-AH^2}=5\)cm 

18 tháng 12 2023

a: E đối xứng A qua H

=>H là trung điểm của AE

Ta có: ΔOCD cân tại O

mà OH là đường cao

nên H là trung điểm của CD

Xét tứ giác ACED có

H là trung điểm chung của AE và CD

=>ACED là hình bình hành

Hình bình hành ACED có AE\(\perp\)CD

nên ACED là hình thoi

b: Xét (O) có

ΔACB nội tiếp

AB là đường kính

Do đó: ΔACB vuông tại C

=>AC\(\perp\)CB

Ta có: AC\(\perp\)CB

DE//AC(ACED là hình thoi)

Do đó: DE\(\perp\)BC tại I

=>ΔEIB vuông tại I

=>I nằm trên đường tròn tâm O', đường kính EB

Ta có: OO'+O'B=OB

=>O'O=OB-O'B=R1-R2

=>(O) và (O') tiếp xúc trong với nhau tại B

c: ΔDIC vuông tại I

mà IH là đường trung tuyến

nên HI=HD

=>ΔHID cân tại H

=>\(\widehat{HID}=\widehat{HDI}=90^0-\widehat{DCB}\)

Ta có: O'E=O'I

=>ΔO'EI cân tại O'

=>\(\widehat{O'IE}=\widehat{O'EI}\)

mà \(\widehat{O'EI}=\widehat{HED}\)(hai góc đối đỉnh)

và \(\widehat{HED}=\widehat{DCB}\)(=90 độ-CDE)

nên \(\widehat{O'IE}=\widehat{DCB}\)

Ta có: \(\widehat{HIO'}=\widehat{HIE}+\widehat{O'IE}\)

\(=90^0-\widehat{DCB}+\widehat{DCB}=90^0\)

=>HI là tiếp tuyến của (O')

31 tháng 12 2023

Câu 1:

Gọi giao điểm của OC với AB là H

Vì OC\(\perp\)AB nên OH\(\perp\)AB tại H

=>OH là khoảng cách từ O xuống dây AB

Ta có: ΔOAB cân tại O

mà OH là đường cao

nên H là trung điểm của AB

=>HA=HB=AB/2=8(cm)

ΔOHA vuông tại H

=>\(OH^2+HA^2=OA^2\)

=>\(OH^2=10^2-8^2=36\)

=>\(OH=\sqrt{36}=6\left(cm\right)\)

Câu 2:

a: Xét (O) có

AB là đường kính

BC là dây

Do đó: AB>BC

b: Xét (O) có

ΔCAB nội tiếp

AB là đường kính

Do đó: ΔCAB vuông tại C

c: Xét ΔACB có

O là trung điểm của AB

OM//CB

Do đó: M là trung điểm của AC

20 tháng 1 2021

A D E K C O O' B H

a) Ta có : OB - O'B = OO'

=> đường tròn (O) và (O'O tiếp xúc trong

b) Ta có : \(OA\perp DE\left(gt\right)\)

=> HD = HE hay H là trung điểm của DE

Theo (gt) : HA = HC

T/g ADCE có 2 đường chéo vuông góc với nhau tại trung điểm mỗi đường

=> T/g ADCE là hình thoi

c) Xét tam giác KBC có :

O'K = O'B = O'C (=bk)

\(\Rightarrow O'K=\frac{1}{2}BC\)

=> Tam giác KBC vuông tại K => \(CK\perp DB\left(1\right)\)

Xét tam giác ADB có :

OD = OA = OB ( =bk )

\(\Rightarrow OD=\frac{1}{2}AB\)

=> Tam giác ADB vuông tại D \(\Rightarrow AD\perp DB\left(2\right)\)

Từ (1) và (2) => CK // AD (*)

Theo  ( c/m câu a ) : Tứ giác ADCE là hình thoi

                              => CE // AD ( ** )

Từ (*) và (**) => CE và CK là 2 đường thẳng trùng nhau

Vậy : 3 điểm E , C , K thẳng hàng ( đpcm )

NM
20 tháng 1 2021

B A C O D E K

a. hai đường tròn tiếp xúc trong

b.ADCE là tứ giác thoi do có hai đường chéo vuông góc vcowis nhau tại trung điểm của mỗi đường

c. ta dễ thấy AD//CẺ mà AE vuông gó c với BD nên CE vuông BD

mà CK cũng vuông góc với BD nến C,K,E thẳng hàng 

d. ta có do tam giác EKD vuông nên \(HK^2=HD^2=HA.HB=HC.HB\)

do \(HK^2=HC.HB\) nên HK là tiếp tuyến của O'