K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 6 2017

gọi F là tiếp điểm của đường tròn (I) với BC

theo tính chất 2 tiếp tuyến cắt nhau ta có các cặp cạnh bằng nhau là

AD = AE ; BE = BF và CF = CD

ta có : AD + AE = AC + AB - (BE + CD) = AC + AB - (BF + CF)

= AC + AB - BC = a + b - c

\(\Rightarrow\) AD = AE = \(\dfrac{a+b-c}{2}\)

24 tháng 6 2017

Tính chất hai tiếp tuyến cắt nhau

9 tháng 3 2018

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

Gọi F là tiếp điểm của đường tròn (I) với BC.

Theo tính chất của hai tiếp tuyến cắt nhau, ta có:

AE = AD

BE = BF

CD = CF

Mà: AE = AB – BE

AD = AC – CD

Nên: AE + AD = (AB – BE) + (AC – CD) = AB + AC – (BE + CD)

= AB + AC – (BF + CF) = AB + AC – BC

Suy ra: AE + AD = c + b – a

Hay: AE = AD = (c + b - a)/2

24 tháng 1 2019

bài này dễ mà mai mik làm cho nha

14 tháng 7 2020

Câu a) tự làm nhé ==* chưa làm được 

A E B F C D c a b

Gọi F là tiếp điểm của đường tròn (I) với BC.

Theo tính chất của hai tiếp tuyến cắt nhau, ta có:

AE = AD

BE = BF

CD = CF

Mà: AE = AB – BE

AD = AC – CD

Nên: AE + AD = ( AB – BE ) + ( AC – CD ) = AB + AC – ( BE + CD )

= AB + AC – (BF + CF) = AB + AC – BC

Suy ra: AE + AD = c + b – a

Hay: AE = AD = \(\frac{\left(c+b-a\right)}{2}\)

24 tháng 6 2017

a) ta có : AB = AC (tính chất tiếp tuyến)

\(\Rightarrow\) tam giác ABC cân tại A

có OA là tia phân giác của góc A

\(\Rightarrow\) OA \(\perp\) BC \(\Rightarrow\) tam giác ABO vuông tại B có đường cao BH

ta có : OB2 = OA.OH \(\Leftrightarrow\) 32 = 5OH

\(\Rightarrow\) OH = \(\dfrac{9}{5}\) = 1,8 (cm)

24 tháng 6 2017

Tính chất hai tiếp tuyến cắt nhau

Tính chất hai tiếp tuyến cắt nhau

25 tháng 2 2018

Tự vẽ hình lấy chứ hình nó khó vẽ trên này lắm thông cảm 

 a) P và Q là tâm đường tròn nội tiếp các tam giác đồng dạng AHB và CHA nên

\(\frac{HP}{HQ}=\frac{AB}{AC}\)nên \(\Delta HPQ~\Delta ABC\left(c-g-c\right)\)

b) Từ câu a suy ra \(\widehat{HPQ}=\widehat{C}\)mà \(\widehat{C}=\widehat{A_1}\)

Nên \(\widehat{HPQ}=\widehat{A_1}\)( 1 )

Tứ giác HPKQ có \(\widehat{PHQ}=\widehat{PKQ}=90^o\)nên là tứ giác nội tiếp, suy ra \(\widehat{HPQ}=\widehat{HKP}\)( 2 )

Từ (1) VÀ (2) suy ra \(\widehat{A_1}=\widehat{HKP}\)do đó KP // AB. Chứng minh tương tự, KQ // AC.

c) Ta có : \(\widehat{C}=\widehat{HKP}=\widehat{MKP}\)tự chứng minh \(\widehat{MKP}=\widehat{M_1}\)(sử dụng kết quả ở câu b).

d) Ta có : \(\widehat{A_1}=\widehat{M_1}\left(=\widehat{C}\right)\)nên KM = KA. Tương tự KP =KA. Do đó năm điểm A, M, P, Q, N thuộc đường tròn (K; KA).

e) Từ câu a suy ra \(\widehat{HQP}=\widehat{C}\)nên HQEC là tứ giác nội tiếp, do đó \(\widehat{QEA}=\widehat{QHC}=45^o\)

Tam giác ADE có : \(\widehat{E}=45^o\)

\(\Rightarrow\) ADE là tam giác vuông cân.

25 tháng 2 2018

à câu cuối còn một cách nữa :)

Chứng minh \(BP\perp AQ\)tương tự ta cũng chứng minh \(CQ\perp AP\)

\(\Rightarrow\)\(AO\perp PQ\)(O là giao điểm của BP và CQ). Tam giác ADE có AO là tia phân giác góc A và \(AO\perp DE\)

\(\Rightarrow\)Tam giác AED vuông cân ( đpcm )

14 tháng 1 2017

Đáp án B

* Theo tính chất hai tiếp tuyến cắt nhau ta có:

AB = AC; DB = DM; EM = EC

suy ra: DE = DM + ME = DB + EC.

* Chu vi tam giác ADE là:

AD + AE + DE = AD + AE + DB + EC

= (AD + DB ) + ( AE + EC ) = AB + AC = 2AB ( vì AB = AC )