Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) đường thẳng d: y=x-2m+3 tiếp xúc (P)
\(\Leftrightarrow\)PT \(x^2-2x+1=x-2m+3\) có nghiệm kép
\(\Leftrightarrow x^2-3x-2+2m=0..có..\Delta=0\\ \Leftrightarrow9+8-8m=0\Leftrightarrow m=\dfrac{17}{8}\)
b)cắt (P) tại 2 điểm phân biệt \(\Leftrightarrow\Delta>0\Leftrightarrow m< \dfrac{17}{8}\)(1)
2 điểm có hoành độ dương \(\Rightarrow\left\{{}\begin{matrix}-\dfrac{b}{a}>0\\\dfrac{c}{a}>0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}3>0\\-2+2m>0\end{matrix}\right.\Rightarrow}}m>-1\left(2\right)\)
*xl nha ct (2) mik viết mãi vx bị lỗi...*
từ (1) và (2) =>-1<m<17/8
c)cắt tại 2 điểm phân biệt =>m<17/8
\(x_1^3+x_2^3-4\left(x_1+x_2\right)=5\Rightarrow\left(x_1+x_2\right)\left(\left(x_1+x_2\right)^2-3x_1x_2\right)-4\left(x_1+x_2\right)=5\\ \Rightarrow3\cdot\left(3^2-3\left(2m-2\right)\right)-4\cdot3=5\Rightarrow m=-\dfrac{1}{3}\left(TM\right)\)
a: Thay x=-1 và y=3 vào (d), ta được:
-2-m+1=3
=>-1-m=3
=>-m=4
hay m=-4
b: PTHĐGĐ là:
\(\dfrac{1}{2}x^2-2x+m-1=0\)
\(\Leftrightarrow x^2-4x+2m-2=0\)
\(\text{Δ}=\left(-4\right)^2-4\left(2m-2\right)\)
\(=16-8m+8=-8m+24\)
Để (d) cắt (P) tại hai điểm phân biệt thì -8m+24>0
hay m<3
Theo Vi-et, ta được:
\(\left\{{}\begin{matrix}x_1+x_2=4\\x_1x_2=2m-2\end{matrix}\right.\)
Theo đề, ta có: \(x_1\cdot x_2\left(x_1^2+x_2^2\right)=-48\)
=>\(\Leftrightarrow\left(2m-2\right)\cdot\left[4^2-2\left(2m-2\right)\right]=-48\)
\(\Leftrightarrow\left(m-1\right)\left(16-4m+4\right)=-24\)
\(\Leftrightarrow\left(m-1\right)\left(-4m+20\right)=-24\)
\(\Leftrightarrow\left(m-1\right)\left(m-5\right)=6\)
\(\Leftrightarrow m^2-6m-1=0\)
\(\Leftrightarrow\left[{}\begin{matrix}m=3+\sqrt{10}\left(loại\right)\\m=3-\sqrt{10}\left(nhận\right)\end{matrix}\right.\)
Bài 2:
Đường tròn \(\left(C_1\right)\) tâm \(\left(1;2\right)\) bán kính \(R=2\)
a/ Không hiểu đề bài, bạn ghi rõ thêm ra được chứ?
Tiếp tuyến đi qua giao điểm của \(\Delta_1;\Delta_2\) hay tiếp tuyến tại các giao điểm của \(\Delta_1\) và \(\Delta_2\) với đường tròn?
b/ Lại không hiểu đề nữa, điểm I trong tam giác \(IAB\) đó là điểm nào vậy bạn?
Bài 1b/
\(\Delta'\) nhận \(\left(2;1\right)\) là 1 vtpt
Gọi vtpt của d' có dạng \(\left(a;b\right)\Rightarrow\frac{\left|2a+b\right|}{\sqrt{2^2+1^2}.\sqrt{a^2+b^2}}=\frac{1}{\sqrt{2}}\)
\(\Leftrightarrow\sqrt{2}\left|2a+b\right|=\sqrt{5\left(a^2+b^2\right)}\Leftrightarrow2\left(2a+b\right)^2=5\left(a^2+b^2\right)\)
\(\Leftrightarrow3a^2+8ab-3b^2=0\Rightarrow\left[{}\begin{matrix}a=-3b\\3a=b\end{matrix}\right.\)
\(\Rightarrow\) d' có 2 vtpt thỏa mãn là \(\left(3;-1\right)\) và \(\left(1;3\right)\)
TH1: d' có pt dạng \(3x-y+c=0\)
\(d\left(I;d'\right)=R\Leftrightarrow\frac{\left|3.1-3+c\right|}{\sqrt{3^2+1^2}}=2\Rightarrow c=\pm2\sqrt{10}\)
\(\Rightarrow\left[{}\begin{matrix}3x-y+2\sqrt{10}=0\\3x-y-2\sqrt{10}=0\end{matrix}\right.\)
TH2: d' có dạng \(x+3y+c=0\)
\(d\left(I;d'\right)=R\Leftrightarrow\frac{\left|1+3.3+c\right|}{\sqrt{10}}=2\Leftrightarrow\left|c+10\right|=2\sqrt{10}\Rightarrow c=-10\pm2\sqrt{10}\)
\(\Rightarrow\left[{}\begin{matrix}x+3y-10+2\sqrt{10}=0\\x+3y-10-2\sqrt{10}=0\end{matrix}\right.\)
Bài 2:
Tọa độ giao điểm của Δ1 và Δ2 là:
\(\left\{{}\begin{matrix}2x+y=4\\5x-2y=-3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{5}{9}\\y=\dfrac{26}{9}\end{matrix}\right.\)
Thay x=5/9 và y=26/9 vào Δ3, ta được:
\(\dfrac{5}{9}m+\dfrac{26}{3}-2=0\)
=>5/9m=-20/3
hay m=-12
1: (d): y=kx+b
Thay x=0 và y=-1 vào (d), ta được:
\(b+k\cdot0=-1\)
=>b=-1
=>(d): y=kx-1
Phương trình hoành độ giao điểm là:
\(-x^2-kx+1=0\)
=>\(x^2+kx-1=0\)
Để trung điểm của AB nằm trên trục tung thì \(x_A+x_B=0\)
=>k=0
2: \(x_1-x_2=\sqrt{\left(x_1+x_2\right)^2-4x_1x_2}=\sqrt{k^2+4}\)
\(\left|x_1^3-x_2^3\right|=\left|\left(x_1-x_2\right)^3+3x_1x_2\left(x_1-x_2\right)\right|\)
\(=\left|\sqrt{\left(k^2+4\right)^3}-3k\sqrt{k^2+4}\right|\)
\(=\left|\sqrt{k^2+4}\left(k^2+4-3k\right)\right|>=2\)
Do \(M\in d_3\) \(\Rightarrow M\left(2a;a\right)\)
\(\frac{\left|2a+a+3\right|}{\sqrt{1^2+1^2}}=2\frac{\left|2a-a-4\right|}{\sqrt{1^2+\left(-1\right)^2}}\Leftrightarrow\left|3a+3\right|=2\left|a-4\right|\)
\(\Leftrightarrow\left(3a+3\right)^2=4\left(a-4\right)^2\Leftrightarrow9a^2+18a+9=4a^2-32a+64\)
\(\Leftrightarrow5a^2+50a-55=0\Rightarrow\left[{}\begin{matrix}a=1\\a=-11\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}M\left(2;1\right)\\M\left(-22;-11\right)\end{matrix}\right.\)