Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án C
Đường tròn (C) có tâm I( -1 ; 3) và bán kính R= 2
Do d’// d nên phương trình của d’ có dạng : 3x- 4y + c= 0.
Để d’ chắn trên (C) một dây cung có độ dài lớn nhất thì d’ phải đi qua tâm I của đường tròn ( trong các dây của đường tròn dây lớn nhất là đường kính).
Do I( -1 ; 3) thuộc d’ nên : 3.(-1) – 4.3 +c= 0
=> c = 15
Vậy đường thẳng cần tìm là d’ : 3x- 4y + 15= 0.
a) Tâm I(2 ; -4), R = 5
b) Đường tròn có phương trình: (x – 2 )2 + (y + 4)2 = 25
Thế tọa độ A(-1 ; 0) vào vế trái, ta có :
(-1- 2 )2 + (0 + 4)2 = 32 + 42 = 25
Vậy A(-1 ;0) là điểm thuộc đường tròn.
Áp dụng công thức tiếp tuyến (Xem sgk)
Ta được pt tiếp tuyến với đường tròn tai A là:
(-1 – 2)(x – 2) + (0 + 4)(y + 4) = 25 <=> 3x – 4y + 3 = 0
Chú ý:
1. Theo tính chất tiếp tuyến với đường tròn tại 1 điểm thuộc đường tròn thì vuông góc với bán kính đi qua tiếp điểm, ta có thể giải câu này như sau:
Vectơ = (-3; 4)
Tiếp tuyến đi qua A(-1; 0) và nhận làm một vectơ pháp tuyến có phương trình:
-3(x + 1) + 4(y – 0) = 0 ,<=> 3x – 4y + 3 = 0
Đường tròn (C) tâm \(I\left(2;-2\right)\) bán kính \(R=3\)
\(\overrightarrow{MI}=\left(1;1\right)\Rightarrow IM=\sqrt{2}< R\Rightarrow\) M nằm phía trong đường tròn
Gọi H là hình chiếu vuông góc của I lên d \(\Rightarrow\) H là trung điểm AB
\(AB=2AH=2\sqrt{R^2-IH^2}=2\sqrt{9-IH^2}\)
\(\Rightarrow AB_{min}\) khi \(IH_{max}\)
Trong tam giác vuông IMH, ta luôn có: \(IH\le IM\Rightarrow IH_{max}=IM\) khi H trùng M hay d vuông góc IM
\(\Rightarrow\) Phương trình d (vuông góc IM và đi qua M)
\(1\left(x-1\right)+1\left(y+3\right)=0\Leftrightarrow x+y+2=0\)
Đường tròn (C) tâm \(I\left(-2;2\right)\) bán kính \(R=3\)
\(\overrightarrow{IM}=\left(3;-5\right)\Rightarrow IM=\sqrt{34}>R\)
\(\Rightarrow\) M nằm ngoài đường tròn
\(\Rightarrow\) Không tồn tại đường thẳng thỏa mãn yêu cầu (bạn xem lại đề, chỉ tìm được đường thẳng d khi điểm M nằm phía trong đường tròn)
\(\overrightarrow{AC}=\left(-2;0\right)=-2\left(1;0\right)\) ; \(\overrightarrow{BC}=\left(3;-4\right)\)
Đường thẳng BC nhận \(\left(4;3\right)\) là 1 vtpt
Phương trình BC:
\(4\left(x+2\right)+3\left(y-5\right)=0\Leftrightarrow4x+3y-7=0\)
Đường cao BH vuông góc AC nên nhận \(\left(1;0\right)\) là 1 vtpt
Phương trình BH:
\(1\left(x+2\right)+0\left(y-5\right)=0\Leftrightarrow x+2=0\)
Đường tròn có bán kính bằng khoảng cách từ A đến BC
\(\Rightarrow R=d\left(A;BC\right)=\frac{\left|4.3+3.1-7\right|}{\sqrt{4^2+3^2}}=\frac{8}{5}\)
Phương trình đường tròn: \(\left(x-3\right)^2+\left(y-1\right)^2=\frac{64}{25}\)
Câu 2:
Đường tròn tâm \(I\left(1;-3\right)\) bán kính \(R=\sqrt{1^2+3^2+6}=4\)
Do \(\Delta\) song song d nên pt \(\Delta\) có dạng: \(3x+4y+c=0\) (với \(c\ne5\))
\(S_{IAB}=\frac{1}{2}IA.IB.sin\widehat{AIB}\le\frac{1}{2}IA.IB=\frac{R^2}{2}\)
\(\Rightarrow\) Diện tích tam giác lớn nhất khi IAB vuông cân tại I
\(\Rightarrow d\left(I;AB\right)=\frac{R}{\sqrt{2}}=2\sqrt{2}\)
\(\Rightarrow\frac{\left|3.1+4.\left(-3\right)+c\right|}{\sqrt{3^2+4^2}}=2\sqrt{2}\) \(\Leftrightarrow\left|c-9\right|=10\sqrt{2}\Rightarrow c=9\pm10\sqrt{2}\)
Có 2 đường thẳng thỏa mãn: \(\left[{}\begin{matrix}3x+4y+9-10\sqrt{2}=0\\3x+4y+9+10\sqrt{2}=0\end{matrix}\right.\)
Chắc chắc bạn viết thiếu yêu cầu đề bài (ví dụ \(\Delta\) là tiếp tuyến của (C) chẳng hạn)
Còn chỉ có \(\Delta\) tạo với d 1 góc 45 độ thì có vô số đường thẳng như vậy