K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
28 tháng 3 2018

Lời giải:

Đường tròn (C):

\(x^2+y^2+2x-2y-2=0\)

\(\Leftrightarrow (x+1)^2+(y-1)^2=4=2^2\)

Do đó đường tròn (C) là đường tròn có tâm \(I(-1;1)\) bán kính \(R=2\)

Từ $I$ kẻ \(IH\perp BC\) thì $H$ là trung điểm của $BC$

\(\Rightarrow BH=\sqrt{3}\)

Áp dụng định lý Pitago:

\(IH=\sqrt{BI^2-BH^2}=\sqrt{R^2-3}=\sqrt{4-3}=1(1)\)

Mà: \(IH=d(I, d)=\frac{|-1-m+2m+3|}{\sqrt{m^2+1}}=\frac{|m+2|}{\sqrt{m^2+1}}(2)\)

Từ \((1); (2)\Rightarrow \frac{|m+2|}{\sqrt{m^2+1}}=1\)

\(\Rightarrow (m+2)^2=m^2+1\Leftrightarrow m^2+4m+4=m^2+1\)

\(\Leftrightarrow 4m+3=0\Leftrightarrow m=\frac{-3}{4}\)

20 tháng 5 2017

Phương pháp tọa độ trong mặt phẳng

20 tháng 5 2017

Phương pháp tọa độ trong mặt phẳng

20 tháng 5 2017

Phương pháp tọa độ trong mặt phẳng

9 tháng 6 2022

bvtiv

NV
24 tháng 1 2022

Đường tròn (C) tâm \(I\left(1;-2\right)\) bán kính \(R=3\)

a. Đường thẳng cắt đường tròn tại 2 điểm pb khi:

\(d\left(I;d\right)< R\Leftrightarrow\dfrac{\left|\sqrt{2}-2m+1-\sqrt{2}\right|}{\sqrt{2+m^2}}< 3\)

\(\Leftrightarrow\left(2m-1\right)^2< 9\left(m^2+2\right)\)

\(\Leftrightarrow8m^2+4m+17>0\) (luôn đúng)

Vậy đường thẳng luôn cắt đường tròn tại 2 điểm pb với mọi m

b. \(S_{IAB}=\dfrac{1}{2}IA.IB.sin\widehat{AIB}=\dfrac{1}{2}R^2.sin\widehat{AIB}\le\dfrac{1}{2}R^2\) do \(sin\widehat{AIB}\le1\)

Dấu "=" xảy ra khi \(sin\widehat{AIB}=1\Rightarrow\Delta IAB\) vuông cân tại I

\(\Rightarrow d\left(I;d\right)=\dfrac{R}{\sqrt{2}}\Leftrightarrow\dfrac{\left|2m-1\right|}{\sqrt{m^2+2}}=\dfrac{3}{\sqrt{2}}\)

\(\Leftrightarrow m^2+8m+16=0\Rightarrow m=-4\)

25 tháng 3 2023

phần a sao ra được 8m2+4m+17 vậy ạ

NV
18 tháng 4 2019

\(x^2-2x+1+y^2-2y+1=1\Leftrightarrow\left(x-1\right)^2+\left(y-1\right)^2=1\)\(\Rightarrow\left\{{}\begin{matrix}I\left(1;1\right)\\R=1\end{matrix}\right.\)

\(x+y-3=0\Rightarrow y=3-x\) thế vào pt đường tròn:

\(x^2+\left(3-x\right)^2-2x-2\left(3-x\right)+1=0\)

\(\Leftrightarrow2x^2-6x+4=0\Rightarrow\left[{}\begin{matrix}x=1\Rightarrow y=2\\x=2\Rightarrow y=1\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}A\left(1;2\right)\\B\left(2;1\right)\end{matrix}\right.\) \(\Rightarrow AB=\sqrt{2}\)

Gọi phương trình d có dạng \(ax+by+c=0\)

Do d qua M(6;2) \(\Rightarrow6a+2b+c=0\Rightarrow c=-6a-2b\)

\(\Rightarrow ax+by-6a-2b=0\)

Do \(AB=\sqrt{2}\Rightarrow\) theo Pitago ta có: \(d\left(I;d\right)=\sqrt{R^2-\left(\frac{AB}{2}\right)^2}=\frac{\sqrt{2}}{2}\)

\(\Rightarrow\frac{\left|a.1+b.1-6a-2b\right|}{\sqrt{a^2+b^2}}=\frac{\sqrt{2}}{2}\Leftrightarrow\left|10a+2b\right|=\sqrt{2a^2+2b^2}\)

\(\Leftrightarrow\left(10a+2b\right)^2=2a^2+2b^2\Leftrightarrow98a^2+40ab+2b^2=0\)???

Bạn có nhầm điểm M ko? Với số liệu này thì tọa độ tính ra cực kì xấu?

22 tháng 4 2019

Đề không sai, ra số xấu nhưng vẫn có kết quả!