Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1) d đi qua M (m2 ; 1) ta có:
2m2 + 3m - 4 = 1
=> 2m2 +3m -5 = 0
m1 = 1 ; m2 = -5/2
2) d giao với hoành độ thì giao điểm có tọa độ (a; 0) và a>1
ta có : 0 = 2a +3m -4 => \(a=\frac{4-3m}{2}\)
\(a>1\Leftrightarrow\frac{4-3m}{2}>1\Leftrightarrow4-3m>2\Leftrightarrow-3m>-2\Leftrightarrow m< \frac{2}{3}\)
Vậy m<2/3 thì .............
3) không hiểu ý câu hỏi

Lời giải:
Vì $(d)$ đi qua $A(2;1)$ nên:
$y_A=x_A+m-1$
$\Leftrightarrow 1=2+m-1\Leftrightarrow m=0$

a: Thay x=1 và y=3 vào (d), ta được:
m+3-m=3
=>3=3(luôn đúng)
b: PTHĐGĐ là:
x^2-mx-3+m=0
=>x^2-mx+m-3=0
Để (d) cắt (P) tại hai điểm phân biệt thì m-3<0
=>m<3

a) Để hàm số đồng biến thì a>0 => m-1>0 <=> m>1
b) Thay M(2;1) vào h/s
1=(m-1).2+2m-5 => m=2
c) Để d song song với đường thẳng trên thì a=a' \(m-1=3\Leftrightarrow m=4\)
d) Cắt 1 điểm trên trục tung thì b=b' \(\Leftrightarrow2m-5=3\Leftrightarrow m=4\)

a) x =-2 d' => y =2(-2) -1 =-5 => M(-2;-5)
d cắt d' tại M =>k khác 2 và M thuộc (d) => k.(-2) -4 =-5 => -2k = -1 => k =1/2 (TM)
b) + Phương trình hoành độ giao điểm của d1 và d2 là:
3x =x+2 => x =1
với x =1 (d1) => y =3 => d1 cắt d2 tại N(1;3)
Để 3 đường thẳng đồng quy thì d3 qua N => (m-3).1 +2m +1 =3 => m -3 +2m +1 =3 => 3m =5 => m =5/3
Lời giải:
$K(-2;1)\in (d)$ khi mà:
$y_K=(m-2)x_K+m+3$
$\Leftrightarrow 1=(m-2)(-2)+m+3$
$\Leftrightarrow 1=-2m+4+m+3=-m+7$
$\Leftrightarrow m=6$