Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(\left(d\right):y=\left(m-2\right)x+m+3\)
Gọi \(A\left(x_o;y_o\right)\) là điểm cố định mà \(\left(d\right)\) đi qua, nên ta có :
\(y_o=\left(m-2\right)x_o+m+3,\forall m\in R\)
\(\Leftrightarrow y_o=mx_o-2x_o+m+3,\forall m\in R\)
\(\Leftrightarrow mx_o+m+2x_o+y_o-3=0,\forall m\in R\)
\(\Leftrightarrow\left(x_o+1\right)m+\left(2x_o+y_o-3\right)=0,\forall m\in R\)
\(\Leftrightarrow\left\{{}\begin{matrix}x_o+1=0\\2x_o+y_o-3=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x_o=-1\\y_o=5\end{matrix}\right.\) \(\Rightarrow A\left(-1;5\right)\)
Vậy Với mọi m, đường thẳng \(\left(d\right)\) luôn đi qua điểm cố định \(A\left(-1;5\right)\)
b) Gọi \(\left\{{}\begin{matrix}\left(d\right)\cap Ox=A\\\left(d\right)\cap Oy=B\end{matrix}\right.\)
Tọa độ điểm \(A\) thỏa mãn
\(\Leftrightarrow\left\{{}\begin{matrix}y=0\\y=\left(m-2\right)x+m+3\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{m+3}{2-m}\\y=0\end{matrix}\right.\)
\(\Rightarrow A\left(\dfrac{m+3}{2-m};0\right)\)
\(\Rightarrow OA=\sqrt[]{\left(\dfrac{m+3}{2-m}\right)^2}=\left|\dfrac{m+3}{2-m}\right|\)
Tọa độ điểm \(B\) thỏa mãn
\(\Leftrightarrow\left\{{}\begin{matrix}y=\left(m-2\right)x+m+3\\x=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=0\\y=m+3\end{matrix}\right.\) \(\Rightarrow B\left(0;m+3\right)\)
\(\Rightarrow OB=\sqrt[]{\left(m+3\right)^2}=\left|m+3\right|\)
\(S_{OAB}=2\Leftrightarrow\dfrac{1}{2}OA.OB=2\)
\(\Leftrightarrow\left|\dfrac{m+3}{2-m}\right|.\left|m+3\right|=4\)
\(\Leftrightarrow\left(m+3\right)^2=4\left|2-m\right|\left(1\right)\)
\(TH1:2-m>0\Leftrightarrow m< 2\)
\(\left(1\right)\Leftrightarrow\left(m+3\right)^2=4\left(2-m\right)\)
\(\Leftrightarrow m^2+6m+9=8-4m\)
\(\Leftrightarrow m^2+10m+1=0\)
\(\Leftrightarrow\left[{}\begin{matrix}m=-5+2\sqrt[]{6}\left(tm\right)\\m=-5-2\sqrt[]{6}\left(tm\right)\end{matrix}\right.\)
\(TH2:2-m< 0\Leftrightarrow m>2\)
\(\left(1\right)\Leftrightarrow\left(m+3\right)^2=4\left(m-2\right)\)
\(\Leftrightarrow m^2+6m+9=4m-8\)
\(\Leftrightarrow m^2+2m+17=0\)
\(\Leftrightarrow\) Phương trình vô nghiệm
Vậy \(\left[{}\begin{matrix}m=-5+2\sqrt[]{6}\\m=-5-2\sqrt[]{6}\end{matrix}\right.\) thỏa mãn đề bài
1, Ta có : y = mx - 2m - 1
<=> m ( x - 2 ) - 1 - y = 0
<=> m(x - 2) - (y+1) = 0
Dấu ''='' xảy ra khi x = 2 ; y = -1
Vậy (d) luôn đi qua A(2;-1)
2, (d) : y = mx - 2m - 1
Cho x = 0 => y = -2m - 1
=> d cắt Oy tại A(0;-2m-1)
=> OA = \(\left|-2m-1\right|\)
Cho y = 0 => x = \(\dfrac{2m+1}{m}\)
=> d cắt trục Ox tại B(2m+1/m;0)
=> OB = \(\left|\dfrac{2m+1}{m}\right|\)
Ta có : \(S_{OAB}=\dfrac{1}{2}\left|\dfrac{2m+1}{m}.\left(-2m-1\right)\right|=2\)
\(\Leftrightarrow\left|-\dfrac{\left(2m+1\right)^2}{m}\right|=4\Leftrightarrow\left[{}\begin{matrix}-\dfrac{\left(2m+1\right)^2}{m}=4\\-\dfrac{\left(2m+1\right)^2}{m}=-4\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}4m^2+8m+1=0\\4m^2+1=0\left(voli\right)\end{matrix}\right.\)
<=> m = \(\dfrac{-2\pm\sqrt{3}}{2}\)
Bài 1:
Đặt: (d): y = (m+5)x + 2m - 10
Để y là hàm số bậc nhất thì: m + 5 # 0 <=> m # -5
Để y là hàm số đồng biến thì: m + 5 > 0 <=> m > -5
(d) đi qua A(2,3) nên ta có:
3 = (m+5).2 + 2m - 10
<=> 2m + 10 + 2m - 10 = 3
<=> 4m = 3
<=> m = 3/4
(d) cắt trục tung tại điểm có tung độ bằng 9 nên ta có:
9 = (m+5).0 + 2m - 10
<=> 2m - 10 = 9
<=> 2m = 19
<=> m = 19/2
(d) đi qua điểm 10 trên trục hoành nên ta có:
0 = (m+5).10 + 2m - 10
<=> 10m + 50 + 2m - 10 = 0
<=> 12m = -40
<=> m = -10/3
(d) // y = 2x - 1 nên ta có:
\(\hept{\begin{cases}m+5=2\\2m-10\ne-1\end{cases}}\) <=> \(\hept{\begin{cases}m=-3\\m\ne\frac{9}{2}\end{cases}}\) <=> \(m=-3\)
a, Gọi \(A\left(x_0;y_0\right)\) là điểm cố định mà (d) luôn đi qua
\(\Leftrightarrow y_0=mx_0+m-1\\ \Leftrightarrow m\left(x_0+1\right)-\left(y_0+1\right)=0\\ \Leftrightarrow\left\{{}\begin{matrix}x_0+1=0\\y_0+1=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x_0=-1\\y_0=-1\end{matrix}\right.\\ \Leftrightarrow A\left(-1;-1\right)\)
Vậy \(A\left(-1;-1\right)\) là điểm cố định mà (d) luôn đi qua
b, PT giao điểm của (d) và Ox là \(y=0\Leftrightarrow mx=1-m\Leftrightarrow x=\dfrac{1-m}{m}\)
\(\Leftrightarrow B\left(\dfrac{1-m}{m};0\right)\Leftrightarrow OB=\left|\dfrac{1-m}{m}\right|\)
PT giao điểm của (d) và Oy là \(x=0\Leftrightarrow y=m-1\Leftrightarrow C\left(0;m-1\right)\Leftrightarrow OC=\left|m-1\right|\)
Ta có tam giác tạo thành từ (d) với Ox,Oy là OCD
Và \(S_{OCD}=2\Leftrightarrow\dfrac{1}{2}OB\cdot OC=2\Leftrightarrow\left|\dfrac{1-m}{m}\left(m-1\right)\right|=2\)
\(\Leftrightarrow\left[{}\begin{matrix}\dfrac{\left(m-1\right)^2}{-m}=2\\\dfrac{\left(m-1\right)^2}{-m}=-2\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}\left(m-1\right)^2=-2m\\\left(m-1\right)^2=2m\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}m^2+1=0\left(vô.lí\right)\\m^2-4m+1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}m=2+\sqrt{3}\\m=2-\sqrt{3}\end{matrix}\right.\)
Vậy \(m=2\pm\sqrt{3}\) thỏa mãn đề bài