Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có đường thẳng \(\Delta\) có hệ số góc \(k=-1\) do đó góc giữa \(\Delta\) và Ox bằng \(45^0\). Do d tạo với \(\Delta\) góc \(60^0\) nên d không có phương vuông góc với Ox. Gọi l là hệ số góc của d khi đó d có phương trình : \(y=l\left(x-1\right)+1\).
Theo định lí ta có :
\(\left|\frac{k-l}{1+kl}\right|=\tan60^0\)\(\Leftrightarrow\left|l+1\right|=\sqrt{3}.\left|1-l\right|\)
Giải phương trình ta được \(l=2\pm\sqrt{3}\)
Vậy ta tìm được 2 đường thẳng thỏa mãn \(d:y=\left(2\pm\sqrt{3}\right)\left(x-1\right)+1\)
Đường thẳng \(\Delta_1\) có vec tơ pháp tuyến \(\overrightarrow{n_1}=\left(3;4\right)\)
Đường thẳng \(\Delta_2\) có vec tơ pháp tuyến \(\overrightarrow{n_2}=\left(4;-3\right)\)
Do \(\overrightarrow{n_1}.\overrightarrow{n_2}=3.4+4.\left(-3\right)=0\) nên \(\Delta_1\perp\Delta_2\)
Do đó nếu đường thẳng d tạo với \(\Delta_1,\Delta_2\) một tam giác cân, thì đó là tam giác vuông cân, tại đỉnh là giao điểm của \(\Delta_1;\Delta_2\)
Bài toán quy về viết phương trình đường thẳng d đi qua điểm M(1;1) và tạo với đường thẳng \(\Delta_1\) một góc \(\frac{\pi}{4}\).
Giả sử đường thẳng d có vec tơ pháp tuyến \(\overrightarrow{m}=\left(a;b\right)\) với \(a^2+b^2\ne0\), khi đó d có phương trình dạng :
\(ax+by-a-b=0\)
Do góc \(\left(d;\Delta_1\right)=\frac{\pi}{4}\) nên
\(\frac{\left|3a+4b\right|}{5\sqrt{a^2+b^2}}=\frac{1}{\sqrt{2}}\Leftrightarrow7a^2-48ab-7b^2=0\)
\(\Leftrightarrow\begin{cases}a=7b\\7a=-b\end{cases}\)
Nếu a=7b, chọn b=1, a=7, ta được đường thẳng d : \(7x+y-8=0\)
Nếu 7a=-b, chọn a=1, b=-7 ta được đường thẳng d : \(x-7y+6=0\)
a. \(2x+3y-7=0\)
b. \(3x-2y-4=0\)
c. Đường thẳng d có hệ số góc \(k=-\frac{2}{3}\), do đó d không tạo với trục hoành góc \(45^0\). Suy ra đường thẳng \(\Delta\) cần tìm, tạo với d góc \(45^0\), không có phương vuông góc với Ox. Gọi \(l\) là hệ số góc của \(\Delta\) , do góc giữa d và \(\Delta\) bằng \(45^0\) nên ta có phương trình :
\(\left|\frac{l+\frac{2}{3}}{1-\frac{2l}{3}}\right|=1\Leftrightarrow\left|3l+2\right|=\left|3-2l\right|\)
Giải phương trình ta thu được :
\(l=\frac{1}{5}\) hoặc \(l=-5\)
* Với \(l=\frac{1}{5}\), ta được \(\Delta:x-5y+3=0\)
* Với \(l=-5\) ta được \(\Delta:5x+y-11=0\)
d. Đường thẳng t cần tìm có vecto pháp tuyến \(\overrightarrow{n}=\left(a;b\right);\left(a^2+b^2\ne0\right)\)
Do góc (t;d) = \(\alpha\) mà \(\cos\alpha=\frac{2}{\sqrt{13}}\) nên ta có phương trình :
\(\frac{\left|2a+3b\right|}{\sqrt{13}.\sqrt{a^2+b^2}}=\frac{2}{\sqrt{13}}\Leftrightarrow\left|2a+3b\right|=2\sqrt{a^2+b^2}\)
\(\Leftrightarrow b\left(12a+5b\right)=0\)
- Nếu \(b=0\) thì \(a\ne0\), tùy ý và do đó ta có đường thẳng \(t:x-2=0\)
- Nếu \(12a+5b=0\) do \(a^2+b^2\ne0\), có thể chọn \(a=5;b=-12\), do đó ta được đường thẳng :
\(5x-12y+2=0\)
a) Giao điểm d1 và d2
\(\left\{{}\begin{matrix}x+3y-1=0\\x-3y-5=0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=-2\\y=1\end{matrix}\right.\) => A (-2;1)
Đường thẳng d3 có \(\overrightarrow{n_{d3}}=\left(2;-1\right)\) . Delta vuông góc với d3 nên có
\(\overrightarrow{u_{\Delta}}=\left(2;-1\right)\) \(\Rightarrow\overrightarrow{n_{\Delta}}=\left(-1;-2\right)\)
PTđt delta
\(-1\left(x+2\right)+\left(-2\right)\left(y-1\right)=0\)
\(\Leftrightarrow-x-2y+1=0\)
b) Tương tự, tìm được đường thẳng delta đi qua B(-1;-1)
Hệ số k = tan45 = 1 .
Tự xử nốt
Giả sử đường thẳng \(\Delta\) cần tìm có vec tơ pháp tuyến \(\overrightarrow{n}=\left(a;b\right)\) với \(a^2+b^2\ne0\) khi đó \(\Delta\)