K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
9 tháng 4 2021

(C) tâm \(I\left(1;0\right)\) bán kính \(R=2\)

(d) cắt (C) tại 2 điểm pb khi và chỉ khi: \(d\left(I;d\right)< R\)

(Nếu \(d\left(I;d\right)>R\) thì ko cắt, \(d\left(I;d\right)=R\) thì tiếp xúc, \(d\left(I;d\right)< R\) thì cắt tại 2 điểm pb)

\(\Leftrightarrow\dfrac{\left|1+2m\right|}{\sqrt{1^2+\left(1-m\right)^2}}< 2\)

\(\Leftrightarrow\left(2m+1\right)^2< 4\left(m^2-2m+2\right)\)

\(\Leftrightarrow...\)

20 tháng 5 2017

Phương pháp tọa độ trong mặt phẳng

11 tháng 4 2016

Tọa độ điểm A, B là nghiệm của hệ phương trình :

\(\begin{cases}\left(x+1\right)^2+\left(y-2\right)^2=13\\x-5y-2=0\end{cases}\)   \(\Leftrightarrow\begin{cases}26y^2+26y=0\\x=5y+2\end{cases}\)

                                            \(\Leftrightarrow\begin{cases}\begin{cases}x=2\\y=0\end{cases}\\\begin{cases}x=-3\\y=-1\end{cases}\end{cases}\)
\(\Rightarrow A\left(2;0\right);B\left(-3;-1\right)\) hoặc \(A\left(-3;-1\right);B\left(2;0\right)\)

Vì tam giác ABC vuông tại B và nội tiếp đường tròn (C) nên AC là đường kính của đường tròn (C). Hay tâm \(I\left(-1;2\right)\) là trung điểm của AC

Khi đó : \(A\left(2;0\right);B\left(-3;-1\right)\Rightarrow C\left(-4;4\right)\)

            \(A\left(-3;-1\right);B\left(2;0\right)\Rightarrow C\left(1;5\right)\)

Vậy \(C\left(-4;4\right)\) hoặc \(C\left(1;5\right)\)

9 tháng 4 2017

a, \(\left(Cm\right)\) có tâm I(m;-2m)luôn thuộc đường thẳng (d) 2x+y=0 và có bán kính R=1

Vậy \(\left(Cm\right)\) luôn tiếp xúc với đường thẳng cố định, đó là tiếp tuyến của\(\left(Cm\right)\) song song với (d)

b,\(0< |m|< \dfrac{2}{\sqrt{5}}\)

14 tháng 4 2020

câu a có đường thẳng d

NV
25 tháng 4 2020

Câu 1:

Đường tròn (C) tâm \(I\left(1;2\right)\) bán kính \(R=2\)

\(\overrightarrow{IM}=\left(2;2\right)=2\left(1;1\right)\)

Do AB luôn vuông góc AM nên đường thẳng AB nhận (1;1) là 1 vtpt

Phương trình AB có dạng: \(x+y+c=0\)

Theo công thức diện tích tam giác:

\(S_{IAB}=\frac{1}{2}IA.IB.sin\widehat{AIB}=\frac{1}{2}R^2sin\widehat{AIB}\le\frac{1}{2}R^2\)

\(\Rightarrow S_{max}=\frac{1}{2}R^2\) khi \(\widehat{AIB}=90^0\)

\(\Rightarrow d\left(I;AB\right)=\frac{R}{\sqrt{2}}=\sqrt{2}\)

\(\Rightarrow\frac{\left|1+2+c\right|}{\sqrt{1^2+1^2}}=\sqrt{2}\Leftrightarrow\left|c+3\right|=2\Rightarrow\left[{}\begin{matrix}c=-1\\c=-5\end{matrix}\right.\)

Có 2 đường thẳng AB thỏa mãn: \(\left[{}\begin{matrix}x+y-1=0\\x+y-5=0\end{matrix}\right.\)

TH1: \(x+y-1=0\Rightarrow y=1-x\)

Thay vào pt đường tròn: \(x^2+\left(1-x\right)^2-2x-4\left(1-x\right)+1=0\)

Giải ra tọa độ A hoặc B (1 cái là đủ) rồi tính được AM

TH2: tương tự.

Bạn tự làm nốt phần còn lại nhé

25 tháng 4 2020

Đây là đề bài 1 chính thức nha bạn!

Trong Oxy, cho (C1): \(x^2+y^2-2x-4y+1=0\), M (3; 4)
a) Tìm tọa độ tâm I và tính bán kính R của (C1).
b) Viết phương trình tiếp tuyến d1 với đường tròn (C1) tại giao điểm của\(\Delta_1:x-2y+5=0,\Delta_2:3x+y+1=0\)
c) Viết phương trình tiếp tuyến d2 với đường tròn (C1) biết d2 song song với d: \(4x+3y+2020=0\)
d) Viết phương trình đường tròn (C2) có tâm M, cắt đường tròn (C1) tại hai điểm A, B sao cho \(S_{\Delta IAB}\)lớn nhất.

27 tháng 5 2020

Hỏi đáp Toán

AH
Akai Haruma
Giáo viên
28 tháng 3 2018

Lời giải:

Đường tròn (C):

\(x^2+y^2+2x-2y-2=0\)

\(\Leftrightarrow (x+1)^2+(y-1)^2=4=2^2\)

Do đó đường tròn (C) là đường tròn có tâm \(I(-1;1)\) bán kính \(R=2\)

Từ $I$ kẻ \(IH\perp BC\) thì $H$ là trung điểm của $BC$

\(\Rightarrow BH=\sqrt{3}\)

Áp dụng định lý Pitago:

\(IH=\sqrt{BI^2-BH^2}=\sqrt{R^2-3}=\sqrt{4-3}=1(1)\)

Mà: \(IH=d(I, d)=\frac{|-1-m+2m+3|}{\sqrt{m^2+1}}=\frac{|m+2|}{\sqrt{m^2+1}}(2)\)

Từ \((1); (2)\Rightarrow \frac{|m+2|}{\sqrt{m^2+1}}=1\)

\(\Rightarrow (m+2)^2=m^2+1\Leftrightarrow m^2+4m+4=m^2+1\)

\(\Leftrightarrow 4m+3=0\Leftrightarrow m=\frac{-3}{4}\)