K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 2 2022

a, bạn tự vẽ nhé 

b, Gọi ptđt (D1) có dạng y = ax + b 

(D1) // (D) \(\hept{\begin{cases}a=\frac{1}{2}\\b\ne2\end{cases}}\)

=> (D1) : y = x/2 + b 

Hoành độ giao điểm tm pt 

\(\frac{x^2}{4}=\frac{x}{2}+b\Leftrightarrow x^2=2x+4b\Leftrightarrow x^2-2x-4b=0\)

\(\Delta'=1-\left(-4b\right)=1+4b\)

Để (D1) tiếp xúc (P) hay pt có nghiệm kép 

\(1+4b=0\Leftrightarrow b=-\frac{1}{4}\)

suy ra \(\left(D1\right):y=\frac{x}{2}-\frac{1}{4}\)

toạ độ M là tương giao của cái nào bạn ? 

24 tháng 5 2021

a, Thay m = -1/2 vào (d) ta được : 

\(y=2x-2.\left(-\frac{1}{2}\right)+2\Rightarrow y=2x+3\)

Hoành độ giao điểm thỏa mãn phương trình 

\(2x+3=x^2\Leftrightarrow x^2-2x-3=0\)

\(\Delta=4-4\left(-3\right)=4+12=16>0\)

\(x_1=\frac{2-4}{2}=-1;x_2=\frac{2+4}{2}=3\)

Vói x = -1 thì \(y=-2+3=1\)

Vớ x = 3 thì \(y=6+3=9\)

Vậy tọa độ giao điểm của 2 điểm là A ( -1 ; 1 ) ; B ( 3 ; 9 )

b, mình chưa học 

24 tháng 5 2021

\(y_1+y_2=4\left(x_1+x_2\right)\)

\(\Leftrightarrow x_1^2+x_2^2=4\left(x_1+x_2\right)\)(1)

Xét phương trình hoành độ giao điểm của (d) và (P) ta có: 

\(x^2=2x-2m+2\)

\(\Leftrightarrow x^2-2x+2m-2=0\)

Theo hệ thức Vi-et ta có: 

\(\hept{\begin{cases}x_1+x_2=2\\x_1x_2=2m-2\end{cases}}\)

Từ (1)  \(\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2=4\left(x_1+x_2\right)\)

\(\Leftrightarrow4-4m+4=8\)

\(\Leftrightarrow m=0\)

vậy..

19 tháng 4 2020

Đề thi tuyển sinh THPT Hoàng Văn Thụ, Hòa Bình, 2013-2014

Giải:

PT hoành độ giao điểm là (m+1)m=x2

<=> x2-(m+1)x+m=0

\(\Delta=\left(m+1\right)^2-4m=m^2-2m+1=\left(m-1\right)^2,m\ne1\)

\(\sqrt{\Delta}=m-1\)

\(x_1=\frac{m+1+m-1}{1}=2m\)

\(\Rightarrow y_1=\left(2m\right)^2-\left(m+1\right)2m+m=4m^2-2m^2-2m+m=2m^2-m\)

\(x_2=\frac{m+1-m+1}{1}=2\)

\(\Rightarrow y_2=4-\left(m+1\right)\cdot2+m=4-2m-2+m=2-m\)

=> A(2m;2m2-m)

15 tháng 11 2020

Phương trình hoành độ giao điểm của (P) và (d):

x2 + 2x -m2 + 1 = 0 

Để thỏa mãn yêu cầu bài toán thì pt này phải có hai nghiêm phân biệt xD và xE và xD + xE = 0

Áp dụng định lý Vi-et thì xD +xE = -2 \(\Rightarrow\)\(\in\varnothing\)