Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 2 :
\(\hept{\begin{cases}3x+2y=11\left(1\right)\\x+2y=5\left(2\right)\end{cases}}\)
Lấy phương trình (1) - phương trình (2) ta được :
\(2x=6\Leftrightarrow x=3\)
Thay x = 3 vào phương trình (2) ta được :
\(3+2y=5\Leftrightarrow2y=2\Leftrightarrow y=1\)
Vậy \(\left(x;y\right)=\left(3;1\right)\)
Vì `(d') //// (d)=>{(a=a'=-1),(b ne b' ne 2):}`
Thay `a=-1;M(1;2)` vào `(d')` có: `2=-1+b<=>b=3` (t/m)
Do (d') song song với d nên \(a=-1\) ; \(b\ne2\)
\(\Rightarrow\) Phương trình (d'): \(y=-x+b\)
Do (d') đi qua M nên:
\(2=-1+b\Rightarrow b=3\)
Vậy \(\left\{{}\begin{matrix}a=-1\\b=3\end{matrix}\right.\)
Bài 1:
Vì (d) đi qua điểm A(1;3) nên thay x=1 và y=3 vào (d) ta có:
3=a.1+b
⇔a+b=3 (1)
Vì (d) đi qua điểm B(-3;-1) nên thay x=-3 và y=-1 vào (d) ta có:
-1 = a.(-3)+b
⇔-3a+b=-1
⇔ 3a - b=1 (2)
Từ (1) và (2) ta có hệ phương trình:
\(\left\{{}\begin{matrix}a+b=3\\3a-b=1\end{matrix}\right.\)
⇔\(\left\{{}\begin{matrix}4a=4\\3a-b=1\end{matrix}\right.\)
⇔\(\left\{{}\begin{matrix}a=1\\3.1-b=1\end{matrix}\right.\)
⇔\(\left\{{}\begin{matrix}a=1\\b=2\end{matrix}\right.\)
Vậy a=1, b=2 là giá trị cần tìm
Bài 2
1, Vì (d) đi qua A(1;2003) nên thay x =1, y=2003 vào (d) ta có:
2003 = 1 +m
⇔ m = 2002
Vậy m = 2002 là giá trị cần tìm
2, Ta có:
x - y +3 =0
⇔ y= x+3
Để (d) // y = x+3 thì:
\(\left\{{}\begin{matrix}1=1\left(\text{luôn đúng}\right)\\m\ne3\end{matrix}\right.\)
Vậy m ≠ 3 thì (d) // x-y+3=0
* Chúc bạn học tốt*
Lời giải:
Vì $(d)$ song song với $(d_1): y=2x+3$ nên $a=2$
Vậy $(d): y=2x+b$
$A\in (d)$ nên $y_A=2x_A+b$
$\Leftrightarrow 3=2.1+b\Rightarrow b=1$
Vậy PTĐT $(d)$ là: $y=2x+1$
a, Vì đường thẳng (d) // với đường thẳng y=-4x
=>a=-4 và b\(\ne\) 0
và vì (d) cắt trục hoành tại điểm có hoành độ=-1 nên x=-1 và y=0. Thế vào, ta được
0=-4*(-1)+b
=> b=-4
vậy, hàm số cần tìm là y=-4x-4
b, vì đường thẳng d vuông góc với đường thẳng y=-5x+1 nên
a*(-5)=-1
=> a=1/5
và vì d đi qua điểm A(5;2) nên x=5;y=2. thế vào ta được
2=(1/5)*5+b
=> b= 1
vậy hàm số cần tìm là y=1/5x+1
c, vì d đi qua 2 điểm A(1;2)và B(-2;-7) nên ta sẽ có 2 phương trình như sau
2=a*1+b( thế tọa độ của A vào)
-7=-2*a+b (thế tòa độ B vào)
giải hệ pt ra ta được a=3; b=-1
vậy hàm số cần tìm là y=3x-1
Vì (d) // (d') nên \(\left\{{}\begin{matrix}a=a'\\b\ne b'\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=5\\b\ne3\end{matrix}\right.\)
⇒ Phương trình đt (d) có dạng (d)=5x+b
Vì đt (d) đi qua điểm A(-1;3) nên ta có
\(\left(d\right)\Leftrightarrow3=5\cdot\left(-1\right)+b\Leftrightarrow b=8\)
Vậy a=5; b=8