Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a.
Giả sử điểm cố định mà (d) đi qua có tọa độ \(M\left(x_0;y_0\right)\)
Với mọi m, ta có:
\(y_0=\left(m+2\right)x_0+m\)
\(\Leftrightarrow m\left(x_0+1\right)+2x_0-y_0=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}x_0+1=0\\2x_0-y_0=0\end{matrix}\right.\) \(\Rightarrow M\left(-1;-2\right)\)
b. Để (d) cắt 2 trục tạo thành tam giác thì \(m\ne\left\{0;-2\right\}\)
Khi đó ta có: \(\left\{{}\begin{matrix}A\left(-\dfrac{m}{m+2};0\right)\\B\left(0;m\right)\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}OA=\left|\dfrac{m}{m+2}\right|\\OB=\left|m\right|\end{matrix}\right.\)
\(S_{OAB}=\dfrac{1}{2}OA.OB=\dfrac{1}{2}\)
\(\Leftrightarrow\dfrac{m^2}{\left|m+2\right|}=1\)
\(\Leftrightarrow\left[{}\begin{matrix}m^2=m+2\\m^2=-m-2\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}m=-1\\m=2\end{matrix}\right.\)
Cho x = 0 => y = m - 2
=> d cắt trục Oy tại B(0;m-2) => OB = | m - 2 |
Cho y = 0 => x = \(\frac{2-m}{3m-2}\)
=> d cắt trục Ox tại A(\(\frac{2-m}{3m-2}\);0) => \(OA=\left|\frac{2-m}{3m-2}\right|\)
Ta có : \(S_{OAB}=\frac{1}{2}.OA.OB=\frac{1}{2}\left|\frac{\left(m-2\right)\left(2-m\right)}{3m-2}\right|=\frac{1}{2}\)
\(\Leftrightarrow\left|\frac{-m^2-4+4m}{3m-2}\right|=1\)ĐK : \(\frac{-m^2-4+4m}{3m-2}\ge0\Leftrightarrow\frac{-\left(m-2\right)^2}{3m-2}\ge0\Leftrightarrow\frac{\left(m-2\right)^2}{3m-2}\le0\)
\(\Rightarrow3m-2< 0\Leftrightarrow m< \frac{2}{3}\)
TH1 : \(\frac{-m^2-4+4m}{3m-2}=1\Leftrightarrow-m^2-4+4m=3m-2\)
\(\Leftrightarrow m^2-m+2=0\Leftrightarrow\left(m+\frac{1}{2}\right)^2+\frac{11}{4}>0\)vậy pt vô nghiệm
TH2 : \(\frac{-m^2+4m-4}{3m-2}=-1\Leftrightarrow-m^2+4m-4=2-3m\)
\(\Leftrightarrow m^2-7m+6=0\Leftrightarrow m=1;m=6\)(ktmđk)
Vậy ko có giá trị m để SOAB = 1/2
a) \(\left(d\right):y=\left(m-2\right)x+m+3\)
Gọi \(A\left(x_o;y_o\right)\) là điểm cố định mà \(\left(d\right)\) đi qua, nên ta có :
\(y_o=\left(m-2\right)x_o+m+3,\forall m\in R\)
\(\Leftrightarrow y_o=mx_o-2x_o+m+3,\forall m\in R\)
\(\Leftrightarrow mx_o+m+2x_o+y_o-3=0,\forall m\in R\)
\(\Leftrightarrow\left(x_o+1\right)m+\left(2x_o+y_o-3\right)=0,\forall m\in R\)
\(\Leftrightarrow\left\{{}\begin{matrix}x_o+1=0\\2x_o+y_o-3=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x_o=-1\\y_o=5\end{matrix}\right.\) \(\Rightarrow A\left(-1;5\right)\)
Vậy Với mọi m, đường thẳng \(\left(d\right)\) luôn đi qua điểm cố định \(A\left(-1;5\right)\)
b) Gọi \(\left\{{}\begin{matrix}\left(d\right)\cap Ox=A\\\left(d\right)\cap Oy=B\end{matrix}\right.\)
Tọa độ điểm \(A\) thỏa mãn
\(\Leftrightarrow\left\{{}\begin{matrix}y=0\\y=\left(m-2\right)x+m+3\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{m+3}{2-m}\\y=0\end{matrix}\right.\)
\(\Rightarrow A\left(\dfrac{m+3}{2-m};0\right)\)
\(\Rightarrow OA=\sqrt[]{\left(\dfrac{m+3}{2-m}\right)^2}=\left|\dfrac{m+3}{2-m}\right|\)
Tọa độ điểm \(B\) thỏa mãn
\(\Leftrightarrow\left\{{}\begin{matrix}y=\left(m-2\right)x+m+3\\x=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=0\\y=m+3\end{matrix}\right.\) \(\Rightarrow B\left(0;m+3\right)\)
\(\Rightarrow OB=\sqrt[]{\left(m+3\right)^2}=\left|m+3\right|\)
\(S_{OAB}=2\Leftrightarrow\dfrac{1}{2}OA.OB=2\)
\(\Leftrightarrow\left|\dfrac{m+3}{2-m}\right|.\left|m+3\right|=4\)
\(\Leftrightarrow\left(m+3\right)^2=4\left|2-m\right|\left(1\right)\)
\(TH1:2-m>0\Leftrightarrow m< 2\)
\(\left(1\right)\Leftrightarrow\left(m+3\right)^2=4\left(2-m\right)\)
\(\Leftrightarrow m^2+6m+9=8-4m\)
\(\Leftrightarrow m^2+10m+1=0\)
\(\Leftrightarrow\left[{}\begin{matrix}m=-5+2\sqrt[]{6}\left(tm\right)\\m=-5-2\sqrt[]{6}\left(tm\right)\end{matrix}\right.\)
\(TH2:2-m< 0\Leftrightarrow m>2\)
\(\left(1\right)\Leftrightarrow\left(m+3\right)^2=4\left(m-2\right)\)
\(\Leftrightarrow m^2+6m+9=4m-8\)
\(\Leftrightarrow m^2+2m+17=0\)
\(\Leftrightarrow\) Phương trình vô nghiệm
Vậy \(\left[{}\begin{matrix}m=-5+2\sqrt[]{6}\\m=-5-2\sqrt[]{6}\end{matrix}\right.\) thỏa mãn đề bài
aPt hoành độ giao điểm là x2=mx+1
<=>x2-mx-1=0
\(_{\Delta}\)=m2-4(-1)=m2+4\(\ge0\)\(\forall m\inℝ\)
=>đpcm
b viet=>x1x2=-1 => A và B nằm ở hai hướng khác nhau
tính (d) giao trục OY tại K
=>Soab=(OK.x1+OK.x2)/2 sau đó tính ra
a) Gọi A(xA;yA) là điểm cố định mà (d) luôn đi qua
=> yA = mxA + 1 với mọi m
=> xA.m + 1 - yA = 0 với mọi m
<=> xA = 0 và 1 - yA = 0
<=> xA = 0 ; yA = 1 Vậy A(0;1)
b) Phương trình hoành đọ giao điểm của (P) và (d) là:
x^ 2 = mx + 1
<=> x 2 - mx - 1 = 0
Δ = (-m)2 + 4 = m2 + 4 > 0 với mọi m
=> Pt có 2 nghiệm pb với mọi m
=> (P) luôn cắt (d) tại 2 điểm phân biệt A;B
ta có: xAxB = -1 < 0
=> xA ; xB trái dấu => A; B nằm khác phía so với trục tung
Em tham khảo tại link dưới đây nhé.
Câu hỏi của Mafia - Toán lớp 9 - Học toán với OnlineMath
\(a,\) Gọi \(A\left(x_0;y_0\right)\) là điểm cố định mà (d) đi qua với mọi m
\(\Leftrightarrow y_0=\left(m+2\right)x_0+m\\ \Leftrightarrow mx_0+m+2x_0-y=0\\ \Leftrightarrow m\left(x_0+1\right)+\left(2x_0-y_0\right)=0\\ \Leftrightarrow\left\{{}\begin{matrix}x_0+1=0\\2x_0-y_0=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x_0=-1\\y_0=-2\end{matrix}\right.\Leftrightarrow A\left(-1;-2\right)\)
Vậy \(A\left(-1;-2\right)\) là điểm cố định mà (d) đi qua với mọi m
\(b,\) PT giao Ox tại A và Oy tại B: \(\left\{{}\begin{matrix}y=0\Rightarrow\left(m+2\right)x=-m\Rightarrow x=-\dfrac{m}{m+2}\Rightarrow A\left(-\dfrac{m}{m+2};0\right)\Rightarrow OA=\left|-\dfrac{m}{m+2}\right|\\x=0\Rightarrow y=m\Rightarrow B\left(0;m\right)\Rightarrow OB=\left|m\right|\end{matrix}\right.\)
\(S_{OAB}=\dfrac{1}{2}\Leftrightarrow\dfrac{1}{2}OA\cdot OB=\dfrac{1}{2}\Leftrightarrow\left|-\dfrac{m}{m+2}\right|\left|m\right|=1\\ \Leftrightarrow\left|-\dfrac{m^2}{m+2}\right|=1\Leftrightarrow\left[{}\begin{matrix}-\dfrac{m^2}{m+2}=1\\\dfrac{m^2}{m+2}=1\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}-m^2=m+2\\m^2=m+2\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}m^2+m+2=0\left(vô.n_0\right)\\m^2-m-2=0\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}m=2\\m=-1\end{matrix}\right.\)
Vậy ...