K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 8 2020

Làm: (d) y\(=\) (m-1)x+m+3

b, Để (d) cắt đường y=-x+1 trên Oy thì

\(\left\{{}\begin{matrix}a\ne a'\\b=b'\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m-1\ne-1\\1=m+3\end{matrix}\right.\Leftrightarrow m=-2\)

Kl:............

21 tháng 8 2020

a, Để (d) cắt đường y=x+2 thì a\(\ne a'\Leftrightarrow m-1\ne1\Leftrightarrow m\ne2\)

Khi m khác 2 ta giả sử (d) cắt đường y=x+2 tại điểm A(x';y') thì

\(\left\{{}\begin{matrix}y'=\left(m-1\right)x+m+3\\y'=x'+2\end{matrix}\right.\)

\(\Rightarrow\left(m-1\right)x+m+3=x'+2\)

\(\Leftrightarrow x'\left(m-2\right)=-1-m\)

\(\Leftrightarrow x'=\frac{-1-m}{m-2}\left(v\text{ì}m\ne2\right)\)

\(\Rightarrow y'=\frac{m-5}{m-2}\)

Để A thuộc góc phần tư thứ nhất thì \(\left\{{}\begin{matrix}x'>0\\y'>0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\frac{-1-m}{m-2}>0\left(1\right)\\\frac{m-5}{m-2}>0\left(2\right)\end{matrix}\right.\)

\(\left(1\right)\Leftrightarrow-1< m< 2\)

\(\left(2\right)\Leftrightarrow\left[{}\begin{matrix}m>5\\m< 2\end{matrix}\right.\)

Ta thấy (1) thoả mãn (2) và thoả mãn m \(\ne2\)

Kl: -1<m<2

Phương trình hoành độ giao điểm là:

\(\left(m-1\right)x+2m+3=2x+1\)

=>\(\left(m-1\right)x-2x=1-2m-3\)

=>\(x\left(m-3\right)=-2m-2\)

=>\(x=\dfrac{-2m-2}{m-3}\)

\(y=2x+1=\dfrac{2\cdot\left(-2m-2\right)}{m-3}+1=\dfrac{-4m-4+m-3}{m-3}=\dfrac{-3m-7}{m-3}\)

Để (d) cắt đường thẳng y=2x+1 tại một điểm thuộc góc phần tư thứ nhất thì 

\(\left\{{}\begin{matrix}m-1\ne2\\\dfrac{-2m-2}{m-3}< 0\\\dfrac{-3m-7}{m-3}>0\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}m\ne2\left(5\right)\\\dfrac{m+1}{m-3}>0\left(1\right)\\\dfrac{3m+7}{m-3}< 0\left(2\right)\end{matrix}\right.\)

(1); \(\dfrac{m+1}{m-3}>0\)

TH1: \(\left\{{}\begin{matrix}m+1>0\\m-3>0\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}m>-1\\m>3\end{matrix}\right.\)

=>m>3

TH2: \(\left\{{}\begin{matrix}m+1< 0\\m-3< 0\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}m< -1\\m< 3\end{matrix}\right.\)

=>m<-1

Vậy: \(m\in\left(3;+\infty\right)\cup\left(-\infty;-1\right)\)(3)

(2): \(\dfrac{3m+7}{m-3}< 0\)

TH1: \(\left\{{}\begin{matrix}3m+7>0\\m-3< 0\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}m>-\dfrac{7}{3}\\m< 3\end{matrix}\right.\)

=>\(\dfrac{-7}{3}< m< 3\)

TH2: \(\left\{{}\begin{matrix}3m+7< 0\\m-3>0\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}m>3\\m< -\dfrac{7}{3}\end{matrix}\right.\)

=>Loại

Vậy: \(-\dfrac{7}{3}< m< 3\)(4)

Từ (3),(4),(5) suy ra \(\left\{{}\begin{matrix}m\ne2\\-\dfrac{7}{3}< m< 3\\m\in\left(3;+\infty\right)\cup\left(-\infty;-1\right)\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}m\ne2\\m\in\left(-\dfrac{7}{3};-1\right)\end{matrix}\right.\)

=>\(m\in\left(-\dfrac{7}{3};-1\right)\)

24 tháng 1 2020

P/s: Bài này thì không có chắc tại cũng mới học qua

\(a)\) Hàm số trên nghịch biến

\(\Leftrightarrow3m-1< 0\)

\(\Leftrightarrow3m< 1\)

\(\Leftrightarrow m< \frac{1}{3}\)

Vậy \(m< \frac{1}{3}\)thì hàm số trên nghịch biến

\(b)\) Hàm số \(y=\left(3m-1\right)x+m-2\)có dạng \(y=ax\)

\(\Leftrightarrow m-2=0\)

\(\Leftrightarrow m=2\)

\(c)\) VÌ \(n\left(-1;1\right)\in\left(d\right)\Rightarrow\)Thay \(x=-1;y=1\)vào đths

Ta có: \(\left(3m-1\right)\left(-1\right)+m-2=1\)

\(\Leftrightarrow-3m+1+m-2=1\)

\(\Leftrightarrow-2m-1=1\)

\(\Leftrightarrow m=-1\)

Vậy \(m=-1\)

\(d)\) Vì \(\left(d\right)\)cắt đường thẳng \(y=2x-1\)tại điểm có hoành độ \(=1\)

\(\Rightarrow\) Thay \(x=1\)vào hàm số \(y=2x-1\)

Ta có: \(y=2.1-1\)

\(\Leftrightarrow y=2-1=1\)

\(\Leftrightarrow\left(1;1\right)\in\left(d\right)\)

Thay \(x=1;y=1\)vào hàm số \(y=\left(3m-1\right)x+m-2\)

Ta có: \(\left(3m-1\right)1+m-2=1\)

\(\Leftrightarrow3m-1+m-2=1\)

\(\Leftrightarrow4m-3=1\)

\(\Leftrightarrow m=1\)

Vậy \(m=1\)

\(e)\) \(\left(d\right)//\)đường thẳng \(y=5x+1\)

\(\Leftrightarrow\hept{\begin{cases}3m-1=5\\m-2\ne1\end{cases}\Leftrightarrow\hept{\begin{cases}3m=6\\m\ne3\end{cases}\Leftrightarrow}\hept{\begin{cases}m=2\\m\ne3\end{cases}}}\Leftrightarrow m=2\)

Vậy \(m=2\)

\(f)\) \(\left(d\right)\)cắt đường thẳng \(y=2x-2020\)

\(\Leftrightarrow3m-1\ne-2\)

\(\Leftrightarrow3m\ne3\)

\(\Leftrightarrow m\ne1\)

Vậy \(m\ne1\)

\(g)\) \(\left(d\right)\perp\)đường thẳng \(y=\frac{1}{4}x-2019\)

\(\Leftrightarrow\left(3m-1\right).\frac{1}{4}=-1\)

\(\Leftrightarrow\frac{3}{4}m-\frac{1}{4}=-1\)

\(\Leftrightarrow\frac{3}{4}m=-\frac{3}{4}\)

\(\Leftrightarrow m=-1\)

Vậy \(m=-1\)

\(h)\) \(\left(d\right)\)cắt đường thẳng \(y=8x-5\)tại một điểm thuộc trục tung

\(\Leftrightarrow\hept{\begin{cases}3m-1\ne8\\m-2=-5\end{cases}\Leftrightarrow\hept{\begin{cases}3m\ne9\\m=-5+2\end{cases}\Leftrightarrow}\hept{\begin{cases}m\ne3\\m=3\end{cases}}\left(ktm\right)}\)

Vậy không tìm được giá trị \(x\)nào TMĐK

câu 9 cho 2 đường thẳng d y= -x+m+2 và d1 y=(m bình -2)x+3 tìm m d và d1 song songcâu 10 cho hai đường thẳng d bằng y trừ 3x công 2 và d phẩy y bằng ax+b tìm a và b  d phẩy đi qua A(âm 1,2)và song song dcâu 11 tìm m để đồ thị hàm số y=2x-1 và y=-x+m cắt nhau tại 1 điểm có hoành độ =2câu 12 tìm m để đường thẳng y=2x-5 và đường thẳng y =(m-2)x+m-2 cắt nhâu tại 1 điểm trên trục tung câu 13 viết pt...
Đọc tiếp

câu 9 cho 2 đường thẳng d y= -x+m+2 và d1 y=(m bình -2)x+3 tìm m d và d1 song song

câu 10 cho hai đường thẳng d bằng y trừ 3x công 2 và d phẩy y bằng ax+b tìm a và b  d phẩy đi qua A(âm 1,2)và song song d

câu 11 tìm m để đồ thị hàm số y=2x-1 và y=-x+m cắt nhau tại 1 điểm có hoành độ =2

câu 12 tìm m để đường thẳng y=2x-5 và đường thẳng y =(m-2)x+m-2 cắt nhâu tại 1 điểm trên trục tung 

câu 13 viết pt đường thẳng d đi qua điêm M( âm 2 ,0) và cắt tung độ =3

câu 14 xác định hàm số y =ax+b biết đồ thị hàm số song song với đường thẳng y= 1 phần 2 x +5vaf cắt trục tung tại điểm có hoành độ bằng -3

câu 15 xác định hàm số y=ã+b biết đồ thị hàm số song song với đường thẳng y=1 phần 2 x +5 cắt trục hoành tại điểm có hoành độ bằng 3

0

b: Thay x=1 vào y=x+1, ta đc:

y=1+1=2

Thay x=1 và y=2 vào (d), ta được;

m+1-2=2

=>m+1=2

=>m=1

c: Tọa độ A là:

y=0 và (m+1)x-2=0

=>x=2/m+1 và y=0

=>OA=2/|m+1|

Tọa độ B là:

x=0 và y=-2

=>OB=2

Để góc OAB=45 độ thì OA=OB

=>|m+1|=1

=>m=0 hoặc m=-2

31 tháng 5 2017

đường thẳng \(d^'\)và \(d\)cắt nhau tại một điểm A trên trục tung nên điểm A có hoành độ \(x_a=0\)và tạo độ A thỏa mãn phương trình \(d^'\)nên :\(\Rightarrow y_a=-2.0+1=1\)\(\Rightarrow A\left(0;1\right)\)Mà do a là giao điểm của 2 đường \(d;d^'\)nên toạn độ A cũng thỏa mãn phương trình của \(d\)\(\Rightarrow1=-m^2+m+1\Leftrightarrow m^2-m=0\Leftrightarrow m\left(m-1\right)=0\Leftrightarrow m\orbr{\begin{cases}m=0\\m=1\end{cases}}\)

câu b :

Xét phương trình hoành độ gia điểm của P và d có :

\(x^2=2mx-m^2+m+1\Leftrightarrow x^2-2mx+m^2-m-1=0\)

để hai đồ thị cắt nhau tại 2 điểm phân biệt thì \(\Delta^'=m^2+m^2-m-1=2m^2-m-1>0\)

\(\left(m-1\right)\left(2m+1\right)>0\Leftrightarrow\orbr{\begin{cases}m< -\frac{1}{2}\\m>1\end{cases}}@\)

khi đó theo vieet có :\(\hept{\begin{cases}x_1+x_2=2m\\x_1x_2=-m^2+m+1\end{cases}}\)

\(\Rightarrow y_1+y_2+2\left(x_1+x_2\right)=22\)với \(y_1=x^2_1;y_2=x_2^2\)

\(\Rightarrow\left(\left(x_1+x_2\right)^2-2x_1.x_2\right)+\left(x_1+x_2\right)2=22\)thay vieet ta có :

\(\left(2m\right)^2-2\left(-m^2+m+1\right)+2.2m=22\)

\(\Leftrightarrow6m^2+2m-24=0\Leftrightarrow\orbr{\begin{cases}m=\frac{-1+\sqrt{144}}{6}\\m=\frac{-1-\sqrt{144}}{6}\end{cases}}\)thỏa mãn @ 

Kết luận nghiệm

tính denta sai rùi rùi bạn ơi 

phải là 145 chứ ko phải 144 

a: Để (d) cắt (d') tại một điểm nằm trên trục tung thì

\(\left\{{}\begin{matrix}-2m+1< >2\\-m+1=m+3\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}-2m< >1\\-m-m=3-1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m< >-\dfrac{1}{2}\\-2m=2\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}m=-1\\m< >-\dfrac{1}{2}\end{matrix}\right.\Leftrightarrow m=-1\)

b: (d): \(y=-\left(2m-1\right)x-m+1\)

\(=-2mx+x-m+1\)

\(=m\left(-2x-1\right)+x+1\)

Tọa độ điểm cố định mà (d) luôn đi qua là:

\(\left\{{}\begin{matrix}-2x-1=0\\y=x+1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}-2x=1\\y=x+1\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}x=-\dfrac{1}{2}\\y=-\dfrac{1}{2}+1=\dfrac{1}{2}\end{matrix}\right.\)

c: Tọa độ A là:

\(\left\{{}\begin{matrix}y=0\\-\left(2m-1\right)x-m+1=0\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}y=0\\\left(-2m+1\right)x=m-1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=0\\x=\dfrac{m-1}{-2m+1}\end{matrix}\right.\)

=>\(A\left(\dfrac{m-1}{-2m+1};0\right)\)

\(OA=\sqrt{\left(\dfrac{m-1}{-2m+1}-0\right)^2+\left(0-0\right)^2}=\sqrt{\left(\dfrac{m-1}{2m-1}\right)^2}=\dfrac{\left|m-1\right|}{\left|2m-1\right|}\)

Tọa độ B là:

\(\left\{{}\begin{matrix}x=0\\y=-\left(2m-1\right)\cdot x-m+1=-\left(2m-1\right)\cdot0-m+1=-m+1\end{matrix}\right.\)

vậy: B(0;-m+1)

\(OB=\sqrt{\left(0-0\right)^2+\left(-m+1-0\right)^2}=\sqrt{\left(-m+1\right)^2}\)

\(=\left|m-1\right|\)

Vì ΔOAB vuông tại O nên \(S_{OAB}=\dfrac{1}{2}\cdot OA\cdot OB\)

\(=\dfrac{1}{2}\cdot\left|m-1\right|\cdot\dfrac{\left|m-1\right|}{\left|2m-1\right|}\)

\(=\dfrac{\dfrac{1}{2}\left(m-1\right)^2}{\left|2m-1\right|}\)

Để \(S_{AOB}=1\) thì \(\dfrac{1}{2}\cdot\dfrac{\left(m-1\right)^2}{\left|2m-1\right|}=1\)

=>\(\dfrac{\left(m-1\right)^2}{\left|2m-1\right|}=2\)

=>\(\left(m-1\right)^2=2\left|2m-1\right|\)(1)

TH1: m>1/2

Phương trình (1) sẽ tương đương với \(\left(m-1\right)^2=2\left(2m-1\right)\)

=>\(m^2-2m+1=4m-2\)

=>\(m^2-6m+3=0\)

=>\(\left[{}\begin{matrix}m=3+\sqrt{6}\left(nhận\right)\\m=3-\sqrt{6}\left(nhận\right)\end{matrix}\right.\)

TH2: m<1/2

Phương trình (2) sẽ tương đương với:

\(\left(m-1\right)^2=2\left(-2m+1\right)\)

=>\(m^2-2m+1=-4m+2\)

=>\(m^2-2m+1+4m-2=0\)

=>\(m^2+2m-1=0\)

=>\(\left[{}\begin{matrix}m=-1+\sqrt{2}\left(nhận\right)\\m=-1-\sqrt{2}\left(nhận\right)\end{matrix}\right.\)

22 tháng 11 2015

a)  x =-2  d' => y =2(-2) -1 =-5 => M(-2;-5)

 d cắt d' tại M =>k khác 2 và  M thuộc (d) => k.(-2) -4 =-5 => -2k = -1 => k =1/2 (TM)

b) + Phương trình hoành độ giao điểm của d1 và d2 là: 

 3x =x+2 => x =1

 với x =1 (d1) => y =3 => d1 cắt d2 tại N(1;3)

Để 3 đường thẳng đồng quy thì d3 qua N => (m-3).1 +2m +1 =3 => m -3 +2m +1 =3 => 3m =5 => m =5/3