Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
đầu tiên viết pt hoành độ giao điểm
thứ hai giải denta của pt hoành độ giao điểm để tìm điều kiện của m
thứ ba giải viet rồi thế x1x2 vào pt mà đề cho
thứ tư vì y1 và y2 đều thuộc (d) nên y1 = 2x1 - m + 1
y2 = 2x2 - m + 1
thứ năm thay y1 và y2 vào pt mà đề cho rồi giải tìm m và m sẽ bằng 7 (thỏa mãn đk của denta)
Xét phương trình hoành độ giao điểm:
\(2x^2=2mx-m-2x+2\)
\(\Leftrightarrow2x^2-2\left(m-1\right)x+m-2=0\left(1\right)\)
Xét pt (1) có:
\(\Delta=4\left(m-1\right)^2-4.2.\left(m-2\right)\)
= \(4m^2-16m+20\)
= \(\left(2m-4\right)^2+4\) >0 với mọi m
\(\Rightarrow\) Phương trình (1) có 2 nghiệm phân biệt với mọi m
\(\Rightarrow\) 2 đường thẳng luôn cắt nhau tại 2 điểm phân biệt
Áp dụng công thức nghiệm ta có:
\(x_A=\dfrac{2m-2+\sqrt{\Delta}}{4}\Rightarrow y_A=\dfrac{2\left(2m-2+\sqrt{\Delta}\right)^2}{16}\)
\(x_B=\dfrac{2m-2-\sqrt{\Delta}}{4}\Rightarrow y_B=\dfrac{2\left(2m-2-\sqrt{\Delta}\right)^2}{16}\)
Theo đề bài ta có:
\(x_A-y_B=y_A-x_B-1\)
\(\Leftrightarrow\dfrac{2m-2+\sqrt{\Delta}}{4}-\dfrac{2\left(2m-2-\sqrt{\Delta}\right)^2}{16}=\dfrac{2\left(2m-2+\sqrt{\Delta}\right)^2}{4}-\dfrac{2m-2-\sqrt{\Delta}}{4}-1\)
\(\Leftrightarrow4\left(2m-2+\sqrt{\Delta}\right)-2\left(2m-2-\sqrt{\Delta}\right)^2=2\left(2m-2+\sqrt{\Delta}\right)^2-4\left(2m-2-\sqrt{\Delta}\right)-16\)\(\Leftrightarrow48m-16-16m^2-4\Delta=0\)
\(\Leftrightarrow48m-16-16m^2-4\left(4m^2-16m+20\right)=0\)
\(\Leftrightarrow-32m^2+112m-96=0\)
\(\Leftrightarrow\left(m-2\right)\left(2m-3\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}m-2=0\\2m-3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}m=2\\m=\dfrac{3}{2}\end{matrix}\right.\)
Vậy để 2 đường thẳng cắt nhau tại 2 điểm \(A_{\left(x_A;y_A\right)};B_{\left(x_B;y_B\right)}\) thỏa mãn
\(x_A-y_B=y_A-x_B-1\) thì \(m=2\) hoặc \(m=\dfrac{3}{2}\)
có y=-x^2 =>(x1-x2)^2+(x2^2-x1^2)^2 =25
ok rồi sau đó tựbiến đổi nhé . mình lười lắm :))))
b) Đường thẳng (d) cắt parabol (P) tại hai điểm phân biệt
\(\Leftrightarrow x^2+2x-m+1=0\)có 2 nghiệm phận biệt \(\Leftrightarrow\Delta'=m>0\)
theo đinh lý ziet : \(x_1+x_2=-2,x_1x_2=-m+1\)
có \(y_1=2x_1-m+1,y_2=2x^2-m+1=>y_1-y_2=2\left(x_1-x_2\right)\)
Nên : \(25=\left(x_1-x_2\right)^2+\left(y_1-y_2\right)^2=5\left(x_1-x_2\right)^2=>\left(x_1-x_2\right)=5\)
hay \(\left(x_1+x_2\right)^2-4x_1x_2=5=>4-4\left(-m+1\right)=5=>m=\frac{5}{4}\left(TM\right)\)