Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài này cần có 1 điều gì đó đặc biệt trong các đường - mặt để giải được (nếu ko chỉ dựa trên khoảng cách thông thường thì gần như bất lực). Thường khoảng cách dính tới đường vuông góc chung, thử mò dựa trên nó :)
Bây giờ chúng ta đi tìm đường vuông góc chung d3 của d1; d2, và hi vọng rằng giao điểm C của d3 với (P) sẽ là 1 điểm nằm giữa A và B với A và giao của d1 và d3, B là giao của d2 và d3 (nằm giữa chứ ko cần trung điểm), thường ý tưởng của người ra đề sẽ là như vậy. Khi đó điểm M sẽ trùng C. Còn C không nằm giữa A và B mà nằm ngoài thì đầu hàng cho đỡ mất thời gian (khi đó việc tìm cực trị sẽ rất lâu).
Quy pt d1 và d2 về dạng tham số, gọi A là 1 điểm thuộc d1 thì \(A\left(t+1;t+2;2t\right)\) và B là 1 điểm thuộc d2 thì \(B\left(t'+1;2t'+3;3t'+4\right)\)
\(\Rightarrow\overrightarrow{AB}=\left(t'-t;2t'-t+1;3t'-2t+4\right)\)
\(\left\{{}\begin{matrix}\overrightarrow{AB}.\overrightarrow{u_{d1}}=0\\\overrightarrow{AB}.\overrightarrow{u_{d2}}=0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}t'-t+2t'-t+1+2\left(3t'-2t+4\right)=0\\t'-t+2\left(2t'-t+1\right)+3\left(3t'-2t+4\right)=0\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}t=0\\t'=-1\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}A\left(1;2;0\right)\\B\left(0;1;1\right)\end{matrix}\right.\) \(\Rightarrow\overrightarrow{BA}=\left(1;1-1\right)\)
Phương trình AB hay d3: \(\left\{{}\begin{matrix}x=1+t\\y=2+t\\z=-t\end{matrix}\right.\)
Giao điểm C của d3 và (P): \(2\left(1+t\right)+2\left(2+t\right)-2t-5=0\)
\(\Rightarrow C\left(\dfrac{1}{2};\dfrac{3}{2};\dfrac{1}{2}\right)\)
Ủa, ko chỉ nằm giữa luôn, mà người ta cho hẳn trung điểm cho cẩn thận :)
Vậy \(M\left(\dfrac{1}{2};\dfrac{3}{2};\dfrac{1}{2}\right)\)
Câu 1:
Gọi A là một điểm chung của \(\left(P\right)\) và \(\left(Q\right)\) \(\Rightarrow A\in d\), chọn \(A\left(0;-1;0\right)\)
Ta có: \(\left[\overrightarrow{n_{\left(P\right)}};\overrightarrow{n_{\left(Q\right)}}\right]=\left(-2;2;0\right)=-2\left(1;-1;0\right)\)
\(\Rightarrow d\) nhận \(\overrightarrow{u_d}=\left(1;-1;0\right)\) là 1 vtcp
Phương trình tham số d: \(\left\{{}\begin{matrix}x=t\\y=-1-t\\z=0\end{matrix}\right.\)
Câu 2:
a/ Do \(\left(Q\right)\perp d\Rightarrow\) (Q) nhận \(\overrightarrow{n_{\left(Q\right)}}=\overrightarrow{u_d}=\left(1;-2;1\right)\) là 1 vtpt
Phương trình (Q):
\(1\left(x-1\right)-2\left(y+1\right)+1\left(z-0\right)=0\Leftrightarrow x-2y+z-3=0\)
b/
Giao điểm B của \(d\) và (P):
\(1+t+1-2t-t+1=0\Rightarrow t=\frac{3}{2}\Rightarrow B\left(\frac{5}{2};-2;\frac{3}{2}\right)\)
Gọi (R) là mặt phẳng chứa d và vuông góc (P)
\(\left[\overrightarrow{u_d};\overrightarrow{n_{\left(P\right)}}\right]=\left(-1;-2;-3\right)\Rightarrow\left(R\right)\) nhận \(\overrightarrow{n_{\left(R\right)}}=\left(1;2;3\right)\) là 1 vtpt
\(\left[\overrightarrow{n_{\left(R\right)}};\overrightarrow{n_{\left(P\right)}}\right]=\left(-5;4;1\right)\) \(\Rightarrow\) hình chiếu d' của d lên (P) nhận \(\overrightarrow{u_{d'}}=\left(-5;4;1\right)\) là 1 vtcp
Phương trình \(d':\) \(\left\{{}\begin{matrix}x=\frac{5}{2}-5t\\y=-2+4t\\z=\frac{3}{2}+t\end{matrix}\right.\)
3.
\(x.f'\left(x\right)+\left(x+1\right)f\left(x\right)=3x^2.e^{-x}\)
\(\Leftrightarrow x.e^x.f'\left(x\right)+\left(x+1\right).e^x.f\left(x\right)=3x^2\)
\(\Leftrightarrow\left[x.e^x.f\left(x\right)\right]'=3x^2\)
Lấy nguyên hàm 2 vế:
\(\Rightarrow x.e^x.f\left(x\right)=\int3x^2dx=x^3+C\)
\(f\left(1\right)=\frac{1}{e}\Rightarrow1.e.\frac{1}{e}=1^3+C\Rightarrow C=0\)
\(\Rightarrow x.e^x.f\left(x\right)=x^3\Rightarrow f\left(x\right)=\frac{x^2}{e^x}\)
\(\Rightarrow f\left(2\right)=\frac{4}{e^2}\)
4.
Gọi (Q) là mặt phẳng chứa d và vuông góc (P)
(Q) nhận \(\overrightarrow{n_{\left(Q\right)}}=\left[\overrightarrow{n_{\left(P\right)}};\overrightarrow{u_d}\right]=\left(-3;2;1\right)\) là 1 vtpt
Phương trình (Q):
\(-3x+2\left(y+1\right)+1\left(z-2\right)=0\Leftrightarrow-3x+2y+z=0\)
d' là hình chiếu của d lên (P) nên là giao tuyến của (P) và (Q) có pt thỏa mãn:
\(\left\{{}\begin{matrix}x+y+z+3=0\\-3x+2y+z=0\end{matrix}\right.\)
\(\Rightarrow d'\) đi qua \(A\left(0;3;-6\right)\) và nhận \(\overrightarrow{u_{d'}}=\left[\overrightarrow{n_{\left(Q\right)}};\overrightarrow{n_{\left(P\right)}}\right]=\left(1;4;-5\right)\) là 1 vtcp
Phương trình chính tắc d': \(\frac{x}{1}=\frac{y-3}{4}=\frac{z+6}{-5}\)
1/
Đặt \(\left\{{}\begin{matrix}u=lnx\\dv=\left(2x+1\right)dx\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}du=\frac{dx}{x}\\v=x^2+x\end{matrix}\right.\)
\(\Rightarrow I=\left(x^2+x\right)lnx|^3_e-\int\limits^3_e\left(x+1\right)dx=\left(x^2+x\right)lnx|^3_e-\left(\frac{1}{2}x^2+x\right)|^3_e\)
\(=12ln3-\frac{e^2}{2}-\frac{15}{2}\)
2/
Đặt \(z=x+yi\)
\(\left|x+1+\left(y-1\right)i\right|=\left|x+\left(y-3\right)i\right|\)
\(\Leftrightarrow\left(x+1\right)^2+\left(y-1\right)^2=x^2+\left(y-3\right)^2\)
\(\Leftrightarrow2x+4y-7=0\Rightarrow x=\frac{7}{2}-2y\)
Ta có: \(A=\left|z-i\right|=\left|x+\left(y-1\right)i\right|=\sqrt{x^2+\left(y-1\right)^2}\)
\(=\sqrt{\left(\frac{7}{2}-2y\right)^2+\left(y-1\right)^2}=\sqrt{5y^2-16y+\frac{53}{4}}=\sqrt{5\left(y-\frac{8}{5}\right)^2+\frac{9}{20}}\ge\sqrt{\frac{9}{20}}\)
\(\Rightarrow\left|z-i\right|_{min}=\sqrt{\frac{9}{20}}\)
Phương trình \(d_1\) : \(\dfrac{x-1}{1}=\dfrac{y-2}{-1}=\dfrac{z-3}{-1}\) dạng tham số: \(\left\{{}\begin{matrix}x=1+t\\t=2-t\\z=3-t\end{matrix}\right.\)
Gọi A là giao điểm d1 và (P), tọa độ A thỏa mãn:
\(3-t-1=0\Rightarrow t=2\Rightarrow A\left(3;0;1\right)\)
\(\overrightarrow{n_P}=\left(0;0;1\right)\) ; \(\overrightarrow{n_Q}=\left(1;1;1\right)\)
\(\overrightarrow{u_{\Delta}}=\left[\overrightarrow{n_P};\overrightarrow{n_Q}\right]=\left(-1;1;0\right)\)
\(\left[\overrightarrow{u_{\Delta}};\overrightarrow{n_P}\right]=\left(1;1;0\right)\)
Phương trình d: \(\left\{{}\begin{matrix}x=3+t\\y=t\\z=1\end{matrix}\right.\)
Câu 2)
Giả sử tồn tại MP cố định đó. Gọi PTMP mà \((d_k)\) luôn đi qua là
\((P):a(x-3)+b(y+1)+c(z+1)=0\) $(1)$
Ta chỉ cần xác định được \(a,b,c\) nghĩa là đã chứng minh được sự tồn tại của mặt phẳng cố định đó.
Vì \(d_k\in (P)\forall k\Rightarrow \overrightarrow{u_{d_k}}\perp \overrightarrow {n_P}\)
\(\Rightarrow a(k+1)+b(2k+3)+c(1-k)=0\) với mọi $k$
\(\Leftrightarrow k(a+2b-c)+(a+3b+c)=0\) với mọi $k$
\(\Leftrightarrow \left\{\begin{matrix} a+2b-c=0\\ a+3b+c=0\end{matrix}\right.\)
Từ đây ta suy ra \(a=\frac{-5b}{2}\) và \(c=\frac{-b}{2}\)
Thay vào \((1)\) và triệt tiêu \(b\) (\(b\neq 0\) bởi vì nếu không thì \(a=c=0\) mặt phẳng không xác định được)
\(\Rightarrow (P): -5x+2y-z+16=0\)
\((d_k)\parallel (6x-y-3z-13=0(1),x-y+2z-3=0(2))\)
\(\Leftrightarrow \overrightarrow {u_{d_k}}\perp \overrightarrow {n_1},\overrightarrow{n_2}\)\(\Rightarrow \overrightarrow{u_{d_k}}\parallel[\overrightarrow{n_1},\overrightarrow{n_2}]\)
Mà \(\overrightarrow{n_1}=(6,-1,-3);\overrightarrow{n_2}=(1,-1,2)\)
\(\Rightarrow \overrightarrow{u_{d_k}}\parallel(-5,-15,-5)\) hay \(\frac{k+1}{-5}=\frac{2k+3}{-15}=\frac{1-k}{-5}\Rightarrow k=0\)
Câu 1 mình đặt ẩn nhưng dài quá nhác viết, với lại mình thấy nó không hay và hiệu quả. Mình nghĩ với cách cho giá trị AB,CD cụ thể thế kia thì chắc chắn có cách nhanh gọn hơn. Nếu bạn có lời giải rồi thì post lên cho mình xem ké với.