K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 8 2015

A B C F D E H K O

+) Ta có: Góc DAC = DAB + BAC = 90+ BAC

Góc BAE = CAE + BAC = 90+ BAC

=> góc DAC = BAE

Xét tam giác DAC và BAE có: DA = BA ; góc DAC = BAE; AC = AE 

=> tam giác DAC = BAE (c-g-c) => DC= BE và góc AEB = ACD 

Gọi O là giao của CD và BE; H là giao của AC và BE

+) Xét Tam giác AEH vuông  có: Góc AEH + AHE = 90o

Mà góc AEH = ACD ; AHE = OHC ( đối đỉnh)

=> góc ACD + OHC = 90o 

Xét tam giác HOC có góc HOC = 180- ( ACD + OHC) = 90o => BOC = 90( kề bù)

- Gọi K là giao của CD và BF 

ta có: góc KFC = KOB ( cùng = 90o); góc OKB = FKC (đối đỉnh)

=> góc OBF = FCK  hay EBF = FCD 

+) Xét tam giác FCD và FBE có: FC = FB (gt); góc FCD = FBE ; CD = BE ( chứng minh trên)

=> tam giác FCD = FBE (c- g- c)

=> FD = FE  => tam giác FDE cân tại F   (*)

Lại có: góc DFC = BFE  mà góc DFC = DFB + BFC  ; góc BFE = BFD +DFE 

=> góc BFC = DFE ; góc BFC = 90( giả thiết) => góc DFE = 90=> tam giác DFE vuông tại F   (**)

Từ (*)(**) => tam giác DFE vuông cân tại F

27 tháng 11 2017

Hình bạn tự vẽ

a) XÉt \(\Delta AED\)và \(\Delta AEC\)CO:

\(AE\)CHUNG

\(AD=AC\)( GIẢ THIẾT)

\(DE=DC\)( E LÀ TRUNG ĐIỂM CỦA DC)

DO ĐÓ \(\Delta AED=\Delta AEC\)( C.C.C)

VẬY \(\Delta AED=\Delta AEC\)

B) Xét \(\Delta ADC\)có:  \(AD=AC\) (giả thiết)

\(\Rightarrow\Delta ADC\)là \(\Delta\)cân tại \(A\)

mà \(E\)là trung điểm của \(DC\)

\(\Rightarrow AE\)là đường trung trực của \(\Delta ADC\)

\(\Rightarrow AE\perp DC\)TẠI \(E\)

VẬY \(AE\perp DC\)

C) THEO CÂU B) \(AE\)LÀ ĐƯỜNG TRUNG TRỰC CỦA \(DC\)

MÀ \(F\in AE\)

\(\Rightarrow F\)CÁCH ĐỀU \(D\)VÀ \(C\)

\(\Rightarrow\widehat{AFD}=\widehat{AFC}\)

VẬY \(\widehat{AFD}=\widehat{AFC}\)

27 tháng 11 2017

d) vì \(HD=HC\)

\(\Rightarrow H\in AE\)( nằm trên đường trung trực)

\(\Rightarrow A,E,H\)THẲNG HÀNG

1. Cho góc xOy nhọn. Trên tia Ox lấy hai điểm A, B (điểm B nằm giữa hai điểm O Và A). Trên tia Oy lấy hai điểm C, D (điểm D nằm giữa hai điểm O và C) sao cho OA = OC và OB = ODa) Chứng minh tam giác OAD = tam giác OCBb) AD cắt BC tại M. Chứng minh tam giác CMB = tam giác AMBc) Chứng minh rằng OM là tia phân giác của góc xOy2. Cho tam giác ABC có AB = AC. Gọi M là trung điểm của BCa) Chứng minh tam giác ABM = tam giác...
Đọc tiếp

1. Cho góc xOy nhọn. Trên tia Ox lấy hai điểm A, B (điểm B nằm giữa hai điểm O Và A). Trên tia Oy lấy hai điểm C, D (điểm D nằm giữa hai điểm O và C) sao cho OA = OC và OB = OD

a) Chứng minh tam giác OAD = tam giác OCB

b) AD cắt BC tại M. Chứng minh tam giác CMB = tam giác AMB

c) Chứng minh rằng OM là tia phân giác của góc xOy

2. Cho tam giác ABC có AB = AC. Gọi M là trung điểm của BC

a) Chứng minh tam giác ABM = tam giác ACM

b) Chứng minh AM vuông góc với BC.

c) Trên cạnh BA lấy điểm E, trên cạnh CA lấy điểm F sao cho BE = CF. Chứng minh tam giác EBC = tam giác ECB

d) Chứng minh EF = BC

3. Cho đường thẳng a. Trên cùng một nửa mặt phẳng có bờ là dường thẳng a lấy hai điểm A và B. Từ A vẽ AH vuông góc với đường thẳng a (H thuộc a). Trên tia đối của tia HA lấy điểm C sao cho HC = HA. Từ B vẽ BK vuông góc với đường thẳng a (K thuộc a). Trên tia đối của tia KB lấy điểm D sao cho KB = KD. Đoạn thẳng AD cắt đường thẳng a tại E. Nối E với C và E với B

a) Chứng minh rằng: EA = EC và EB = ED

b) Chứng minh rằng: C, E, B thẳng hàng

c) Gọi M là trung điểm của đoạn thẳng AB, N là trung điểm của đoạn thẳng CD. Chứng minh rằng EM = EN

4. Cho tam giác ABC. D, E lần lượt là trung điểm của đoạn thẳng AB, AC. Trên tia đối của tia DC lấy điểm M sao cho DM = DC. Trên tia đối cuả tia EB lấy điểm N sao cho EN = EB. Chứng minh rằng

a) Tam giác DBC = tam giác DAM

b) AM//BC

c) M, A, N thẳng hàng

0

a) Xét ∆AEB và ∆ADC ta có :

EA = AC 

DA = AB 

EAB = DAC( 2 góc đối đỉnh) 

=> ∆AEB = ∆ADC (c.g.c)(dpcm)

=> BE = DC ( 2 cạnh tương ứng) (dpcm)

3 tháng 7 2019

a)

có \(\widehat{DAC}=90^0+\widehat{BAC}\) ; \(\widehat{BAE}=90^0+\widehat{BAC}\)

\(\Rightarrow\widehat{DAC}=\widehat{BAE}\)

Xét \(\Delta ADC\)và \(\Delta ABE\)

có \(\widehat{DAC}=\widehat{BAE}\)

\(AB=AD\)

\(AC=AE\)

nên \(\Delta ADC=\text{​​}\Delta ABE\left(c-g-c\right)\)

b) 

\(\Delta ADC=\text{​​}\Delta ABE\)

nên \(CD=BE\)

27 tháng 12 2015

có thể làm được nhưng k biết vẽ hình