K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

HQ
Hà Quang Minh
Giáo viên
29 tháng 9 2023

a) Xét phương trình tham số của d: \(\left\{ \begin{array}{l}x =  - 1 - 3t\left( 1 \right)\\y = 2 + 2t\left( 2 \right)\end{array} \right.\).

 Lấy \(\left( 1 \right) + \frac{3}{2}.\left( 2 \right) \Rightarrow x + \frac{3}{2}y = 2 \Rightarrow 2x + 3y - 4 = 0\)

Vậy phương trình tổng quát của đường thẳng d là: \(2x + 3y - 4 = 0\)

b) Xét hệ phương trình: \(\left\{ \begin{array}{l}2x + 3y - 4 = 0\\x = 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}y = \frac{4}{3}\\x = 0\end{array} \right.\) . Vậy giao điểm của d với trục Oy là: \(A\left( {0;\frac{4}{3}} \right)\)

Xét hệ phương trình: \(\left\{ \begin{array}{l}2x + 3y - 4 = 0\\y = 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}y = 0\\x = 2\end{array} \right.\) . Vậy giao điểm của d với trục Ox là: \(B\left( {2;0} \right)\)

c) Thay tọa độ điểm \(M\left( { - 7;{\rm{ }}5} \right)\)vào phương trình đường thẳng d ta có: \(2.\left( { - 7} \right) + 3.5 - 4 \ne 0\)

Vậy \(M\left( { - 7;{\rm{ }}5} \right)\)không thuộc đường thẳng d.

HQ
Hà Quang Minh
Giáo viên
27 tháng 9 2023

+) Gọi là giao điểm của đường thẳng với trục tung

Suy ra tọa độ của là: \(A\left( {0;y} \right)\)

Thay \(x = 0\) vào phương trình \(\left\{ \begin{array}{l}x = 2 - t\\y = 5 + 3t\end{array} \right.\) ta có: \(\left\{ \begin{array}{l}0 = 2 - t\\y = 5 + 3t\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}t = 2\\y = 11\end{array} \right.\)

Vậy giao điểm của với trục tung là \(A\left( {0;11} \right)\)

+) Gọi là giao điểm của đường thẳng với trục hoành

Suy ra tọa độ của là: \(B\left( {x;0} \right)\)

Thay \(y = 0\) vào phương trình \(\left\{ \begin{array}{l}x = 2 - t\\y = 5 + 3t\end{array} \right.\) ta có: \(\left\{ \begin{array}{l}x = 2 - t\\0 = 5 + 3t\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x = \frac{{11}}{3}\\t =  - \frac{5}{3}\end{array} \right.\)

Vậy giao điểm của với trục hoành là \(B\left( {\frac{{11}}{3};0} \right)\)

HQ
Hà Quang Minh
Giáo viên
29 tháng 9 2023

a) Chọn \(t = 0;t = 1\) ta lần được được 2 điểm A và B thuộc đường thẳng \(\Delta \) là: \(A\left( {1; - 2} \right),B\left( { - 1; - 1} \right)\)

b) +) Thay tọa độ điểm C vào phương trình đường thẳng \(\Delta \) ta có: \(\left\{ \begin{array}{l}1 = 1 - 2t\\ - 1 =  - 2 + t\end{array} \right.\). Do hệ phương trình vô nghiệm nên C không thuộc đường thẳng \(\Delta \)

+) Thay tọa độ điểm D vào phương trình đường thẳng \(\Delta \) ta có: \(\left\{ \begin{array}{l}1 = 1 - 2t\\3 =  - 2 + t\end{array} \right.\). Do hệ phương trình vô nghiệm nên D không thuộc đường thẳng \(\Delta \)

HQ
Hà Quang Minh
Giáo viên
30 tháng 9 2023

a) Đường thẳng \({\Delta _1}\)có một vectơ chỉ phương là \({\overrightarrow u _{{\Delta _1}}} = \left( {2;5} \right)\)

Do đó \({\overrightarrow n _{{\Delta _1}}} = \left( { - 5;2} \right)\), đồng thời \({\Delta _1}\) đi qua điểm \(M\left( {1;3} \right)\) nên  phương trình tổng quát của \({\Delta _1}\) là: \(-5\left( {x - 1} \right) + 2\left( {y - 3} \right) = 0 \Leftrightarrow 5x - 2y + 1 = 0\).

b) Đường thẳng \({\Delta _2}\)có một vectơ pháp tuyến là \({\overrightarrow n _{{\Delta _2}}} = \left( {2;3} \right)\)

Do đó \({\overrightarrow u _{{\Delta _1}}} = \left( { - 3;2} \right)\), đồng thời \({\Delta _2}\) đi qua điểm \(N\left( {1;1} \right)\) nên  phương trình tham số của \({\Delta _2}\) là: \(\left\{ \begin{array}{l}x = 1 - 3t\\y = 1 + 2t\end{array} \right.\).

HQ
Hà Quang Minh
Giáo viên
1 tháng 10 2023

Chọn B.

HQ
Hà Quang Minh
Giáo viên
29 tháng 9 2023

a)  Từ phương trình tổng quát của đường thẳng, ta lấy được một vecto pháp tuyến là: \(\overrightarrow n  = \left( {1; - 2} \right)\) nên ta chọn vecto chỉ phương của đường thẳng d là: \(\overrightarrow u  = \left( {2;1} \right)\).

 Chọn điểm \(A\left( {1; - 2} \right) \in d\).Vậy phương trình tham số của đường thẳng d là: \(\left\{ \begin{array}{l}x = 1 + 2t\\y =  - 2 + t\end{array} \right.\) (t là tham số)

b)  Do điểm M thuộc d nên ta có: \(M\left( {1 + 2m; - 2 + m} \right);m \in \mathbb{R}\).

 Ta có: \(OM = 5 \Leftrightarrow \sqrt {{{\left( {1 + 2m} \right)}^2} + {{\left( { - 2 + m} \right)}^2}}  = 5 \Leftrightarrow {m^2} = 4 \Leftrightarrow m =  \pm 2\)

 Với \(m = 2 \Rightarrow M\left( {5;0} \right)\)

 Với \(m =  - 2 \Rightarrow M\left( { - 3; - 4} \right)\)

 Vậy ta có 2 điểm M thỏa mãn điều kiện đề bài.

c)  Do điểm N thuộc d nên ta có: \(N\left( {1 + 2n; - 2 + n} \right)\)

 Khoảng cách từ N đến trục hoành bằng giá trị tuyệt đối của tung độ điểm N. Do đó, khoảng cách tư N đến trục hoành bằng 3 khi và chỉ khi: \(\left| { - 2 + n} \right| = 3 \Leftrightarrow \left[ \begin{array}{l}n = 5\\n =  - 1\end{array} \right.\)

 Với \(n = 5 \Rightarrow N\left( {11;3} \right)\)

 Với \(n =  - 1 \Rightarrow N\left( { - 1; - 3} \right)\)

 Vậy có 2 điểm N thỏa mãn bài toán

a: Δ có vtcp là (2;-1) và đi qua A(1;-3)

=>VTPT là (1;2)

PTTQ là:

1(x-1)+2(y+3)=0

=>x-1+2y+6=0

=>x+2y+5=0

b: Vì d vuông góc Δ nên d: 2x-y+c=0

Tọa độ giao của d1 và d2 là:

x+2y=8 và x-2y=0

=>x=4 và y=2

Thay x=4 và y=2 vào 2x-y+c=0, ta được

c+2*4-2=0

=>c=-2

HQ
Hà Quang Minh
Giáo viên
1 tháng 10 2023

Chọn A

1: (d): x=-2-2t và y=1+2t nên (d) có VTCP là (-2;2)=(-1;1) và đi qua B(-2;1)

=>(d') có VTPT là (-1;1)

Phương trình (d') là;

-1(x-3)+1(y-1)=0

=>-x+3+y-1=0

=>-x+y+2=0

2: (d) có VTCP là (-1;1)

=>VTPT là (1;1)

Phương trình (d) là:

1(x+2)+1(y-1)=0

=>x+y+1=0

Tọa độ H là;

x+y+1=0 và -x+y+2=0

=>x=1/2 và y=-3/2

 

23 tháng 11 2021

A nhé

hihhihihiihihihhiihhiihihihih