K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 8 2023

tham khảo:

a) Hình chiếu b' của b trên (P) là A'B'

b)  a⊥mp(b,b′)

b⊥b′

c) a⊥mp(b,b′)

a⊥b

HQ
Hà Quang Minh
Giáo viên
22 tháng 9 2023

a) Ta có:

\(\left. \begin{array}{l}AH \bot \left( P \right)\\BK \bot \left( P \right)\end{array} \right\} \Rightarrow AH\parallel BK\)

Mà \(AB\parallel HK\)

\( \Rightarrow ABKH\) là hình bình hành có \(AH \bot \left( P \right) \Rightarrow AH \bot HK \Rightarrow \widehat {AHK} = {90^ \circ }\)

Vậy \(ABKH\) là hình chữ nhật.

Vậy \(AH = BK\).

b) Ta có:

\(\left. \begin{array}{l}AH \bot \left( Q \right)\\BK \bot \left( Q \right)\end{array} \right\} \Rightarrow AH\parallel BK\)

Mà \(AB\parallel HK\)

\( \Rightarrow ABKH\) là hình bình hành có \(AH \bot \left( Q \right) \Rightarrow AH \bot HK \Rightarrow \widehat {AHK} = {90^ \circ }\)

Vậy \(ABKH\) là hình chữ nhật.

Vậy \(AH = BK\).

QT
Quoc Tran Anh Le
Giáo viên
22 tháng 9 2023

a) Ta có:

\(\left. \begin{array}{l}a \bot \left( Q \right)\\a \subset \left( P \right)\end{array} \right\} \Rightarrow \left( P \right) \bot \left( Q \right)\)

b) Ta có:

\(\left. \begin{array}{l}\left. \begin{array}{l}a \bot \left( Q \right)\\b \subset \left( Q \right)\end{array} \right\} \Rightarrow a \bot b\\b \bot c\\a,c \subset \left( P \right)\end{array} \right\} \Rightarrow b \bot \left( P \right)\)

26 tháng 5 2017

a) Đúng

b) Đúng

c) Sai

d) Sai

e) Sai

QT
Quoc Tran Anh Le
Giáo viên
22 tháng 9 2023

a) Vì \(\left( \alpha  \right),\left( \beta  \right)\) là các mặt phẳng qua O và giao 2 mặt phẳng là 1 đường thẳng nên hai mặt phẳng \(\left( \alpha  \right),\left( \beta  \right)\) cắt nhau theo một đường thẳng đi qua O.

b) Gọi \(\Delta \) là giao tuyến của 2 \(\left( \alpha  \right),\left( \beta  \right)\)

\(\left. \begin{array}{l}a \bot \left( \alpha  \right)\\\Delta  \subset \left( \alpha  \right)\end{array} \right\} \Rightarrow a \bot \Delta \)

\(\left. \begin{array}{l}b \bot \left( \beta  \right)\\\Delta  \subset \left( \beta  \right)\end{array} \right\} \Rightarrow b \bot \Delta \)

Mà \(a \cap b = \left\{ I \right\} \Rightarrow \Delta  \bot \left( P \right)\)

16 tháng 5 2021

S A B C D H O K I L T

a) SA vuông góc với (ABCD) => SA vuông góc AD; hình thang ABCD vuông tại A => AD vuông góc AB

=> AD vuông góc (SAB), mà AD nằm trong (SAD) nên (SAB) vuông góc (SAD).

b) AD vuông góc (SAB), BC || AD => BC vuông góc (SAB) => B là hc vuông góc của C trên (SAB)

=> (SC,SAB) = ^CAB

\(SB=\sqrt{AS^2+AB^2}=\sqrt{2a^2+a^2}\)\(=a\sqrt{3}\)

\(\tan\widehat{CAB}=\frac{BC}{SB}=\frac{a}{a\sqrt{3}}=\frac{\sqrt{3}}{3}\)=> (SC,SAB) = ^CAB = 300.

c) T là trung điểm của AD, K thuộc ST sao cho AK vuông góc ST, BT cắt AC tại O, HK cắt AO tại I, AI cắt SC tại L.

BC vuông góc (SAB) => BC vuông góc AH, vì AH vuông góc SB nên AH vuông góc SC. Tương tự AK vuông góc SC

=> SC vuông góc (HAK) => SC vuông góc AI,AL. Lập luận tương tự thì AL,AI vuông góc (SCD).

Dễ thấy \(\Delta\)SAB = \(\Delta\)SAT, chúng có đường cao tương ứng AH và AK => \(\frac{HS}{HB}=\frac{KS}{KT}\)=> HK || BT || CD

=> d(H,SCD) = d(I,SCD) = IL (vì A,I,L vuông góc (SCD)) = \(\frac{IL}{AL}.AL=\frac{CO}{CA}.\frac{SI}{SO}.AL=\frac{1}{2}.\frac{SH}{SB}.\frac{AS.AC}{\sqrt{AS^2+AC^2}}\)

\(=\frac{1}{2}.\frac{SA^2}{SA^2+SB^2}.\frac{AS.AC}{\sqrt{AS^2+AC^2}}=\frac{1}{2}.\frac{2a^2}{2a^2+a^2}.\frac{a\sqrt{2}.a\sqrt{2}}{\sqrt{2a^2+2a^2}}=\frac{a}{3}\)

17 tháng 5 2021

undefined

undefined

 

 


 

 

21 tháng 8 2023

tham khảo:

a) Vì a//a', d⊥a nên d⊥a′, Hay EF⊥OB

Tam giác EBF có OB⊥EF; O là trung điểm EF nên tam giác EBF cân tại B. Suy ra BE = BF

Tương tự ta chứng minh được CE = CF

Suy ra tam giác CEB bằng tam giác CFB

b) Vì tam giác CEB và CFB bằng nhau nên DE = DF

Nên tam giác DEF cân tại D có DO là trung tuyến nên DO⊥EF

Suy ra d⊥c

Gọi (R) là mặt phẳng chứa a và (R)//(Q)

(Q)//(R)

\(\left(P\right)\cap\left(Q\right)=a'\)

\(\left(P\right)\cap\left(R\right)=a\)

Do đó: a//a'

mà IJ vuông góc a

nên JI vuông góc a'

\(\left(P\right)\perp\left(Q\right)\)

\(\left(P\right)\cap\left(Q\right)=a'\)

\(JI\perp a\)

Do đó: JI vuông góc (Q)

=>IJ vuông góc b

21 tháng 8 2023

tham khảo:

Gọi (R) là mặt phẳng chứa a song song với (Q).

(P) cắt hai mặt phẳng song song tại a và a' nên a//a'

Trong mặt phẳng (P), IJ⊥a,a//a′ nên IJ⊥a′
Ta có: (P)⊥(Q), (P) cắt (Q) tại a', IJ⊥a′ nên IJ⊥(P)
Suy ra IJ⊥b
 

26 tháng 5 2017

Vectơ trong không gian, Quan hệ vuông góc