Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đường tròn c: Đường tròn qua B với tâm O Đoạn thẳng h: Đoạn thẳng [A, B] Đoạn thẳng i: Đoạn thẳng [B, C] Đoạn thẳng j: Đoạn thẳng [A, C] Đoạn thẳng n: Đoạn thẳng [O, C] Đoạn thẳng p: Đoạn thẳng [F, C] Đoạn thẳng q: Đoạn thẳng [C, H] Đoạn thẳng r: Đoạn thẳng [B, E] Đoạn thẳng s: Đoạn thẳng [C, E] Đoạn thẳng t: Đoạn thẳng [A, F] O = (1.42, 2.28) O = (1.42, 2.28) O = (1.42, 2.28) B = (5.54, 2.28) B = (5.54, 2.28) B = (5.54, 2.28) Điểm A: Giao điểm đường của c, f Điểm A: Giao điểm đường của c, f Điểm A: Giao điểm đường của c, f Điểm C: Điểm trên c Điểm C: Điểm trên c Điểm C: Điểm trên c Điểm H: Giao điểm đường của k, h Điểm H: Giao điểm đường của k, h Điểm H: Giao điểm đường của k, h Điểm M: Trung điểm của A, C Điểm M: Trung điểm của A, C Điểm M: Trung điểm của A, C Điểm N: Trung điểm của H, C Điểm N: Trung điểm của H, C Điểm N: Trung điểm của H, C Điểm F: Giao điểm đường của g, m Điểm F: Giao điểm đường của g, m Điểm F: Giao điểm đường của g, m Điểm E: Giao điểm đường của g, l Điểm E: Giao điểm đường của g, l Điểm E: Giao điểm đường của g, l
a) Ta thấy \(\widehat{ACB}\) là góc nội tiếp chắn nửa đường tròn AB. Vậy nên \(\widehat{ACB}=\frac{sđ\widebat{AB}}{2}=\frac{180^o}{2}=90^o\)
Vậy tam giác ABC là tam giác vuông tại C.
b) Do M là trung điểm của dây cung AC. Theo tính chất đường kính, dây cung, ta có \(OM\perp AC\)
Xét tứ giác OMCH có \(\widehat{OMC}=\widehat{OHC}=90^o\) nên OMCH là tứ giác nội tiếp.
Đường tròn ngoại tiếp tứ giác trên có đường kinh là OC nên tâm I của đường tròn là trung điểm OC.
c) Xét tam giác vuông ABE có đường cao BC. Áp dụng hệ thức lượng trong tam giác ta có:
\(EC.EA=BE^2\)
Xét tam giác vuông BCE, theo định lý Pi-ta-go, ta có:
\(BE^2=OE^2-OB^2=OE^2-R^2\)
Vậy ta có ngay \(EC.EA=OE^2-R^2\)
d) Ta thấy CH // BE nên áp dụng định lý Talet ta có:
\(\frac{NH}{BF}=\frac{NC}{FE}\left(=\frac{AH}{AB}\right)\)
Lại có NH = HC nên BF = FE
Xét tam giác vuông BCE có CF là trung tuyến ứng vớ cạnh huyền nên FC = FB.
Vậy thì \(\Delta OCF=\Delta OBF\left(c-c-c\right)\Rightarrow\widehat{OCF}=\widehat{OBF}=90^o\)
hay CF là tiếp tuyến của đường tròn (I)
O B A M N C E F
a) Do C là giao điểm của BN với đường tròn nên C thuộc đường tròn.
Lại có AB là đường kính nên \(\widehat{ACB}=90^o\) (Góc nội tiếp chắn nửa đường tròn)
Vậy nên tam giác ABC vuông tại C.
b) Do M thuộc đường tròn nên \(\widehat{AMB}=90^o\Rightarrow EM\perp AN\)
Ta cũng có \(NC\perp AE\)
Xét tam giác ANE có EM, NC là các đường cao nên B là trực tâm.
Vậy thì \(AB\perp NE\)
c) Xét tứ giác AFNE có : MA = MN; MF = ME nên AFNE là hình bình hành (Dấu hiệu nhận biết)
\(\Rightarrow\) FN // AE
Ta chứng minh BA = BN và \(BN\perp FN\)
Thật vậy, xét tam giác ABN có MA = MN, \(BM\perp AN\) nên ABN là tam giác cân.
Vậy BA = BN
Ta có \(NC\perp AE\Rightarrow NC\perp FN\)
Suy ra NF là tiếp tuyến của đường tròn (B; BA).
Em chưa học tới góc nội tiếp chắn nửa đường tròn