K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
3 tháng 4 2020

\(\left\{{}\begin{matrix}x=2t\\y=1-3t\end{matrix}\right.\) \(\Rightarrow d\) nhận \(\left(2;-3\right)\) là 1 vtcp

Khi đó \(k\left(2;-3\right)\) với \(k\ne0\) cũng là vtcp của d

Ví dụ lấy \(k=2\) ta được 1 vtcp khác là \(\left(4;-6\right)\)

Từ đó suy ra được 2 vtpt là \(\left(3;2\right)\)\(\left(6;4\right)\)

b/ Cho \(t=1\Rightarrow A\left(2;-2\right)\)

Cho \(t=0\Rightarrow B\left(0;1\right)\)

a: VTCP là (3;-5)

=>VTPT là (5;3)

b: 3t-2=14

=>3t=16

=>t=16/3

=>y=-7-5t=-7-80/3=-101/3

c: -5t-7=-12

=>5t+7=12

=>t=1

=>x=-2+3=1

d: H(14;-101/3); G(1;-12)

Tọa đọ trung điểm là:

\(\left\{{}\begin{matrix}x=\dfrac{14+1}{2}=\dfrac{15}{2}\\y=\dfrac{1}{2}\left(-\dfrac{101}{3}-12\right)=-\dfrac{137}{6}\end{matrix}\right.\)

AH
Akai Haruma
Giáo viên
30 tháng 1 2017

Câu 1)

Gọi PT đường thẳng $MK$ là \((\Delta):y=ax+b\)

\((\Delta)\perp (d)\Rightarrow a(-2)=-1\Rightarrow a=\frac{1}{2}\)

Mặt khác \(M(3,3)\in (\Delta)\Rightarrow 3=\frac{3}{2}+b\Rightarrow b=\frac{3}{2}\Rightarrow (\Delta):y=\frac{x}{2}+\frac{3}{2}\)

Gọi tọa độ của $K=(m,n)$. Vì \(K\in (\Delta),(d)\) nên \(\left\{\begin{matrix} n=\frac{m}{2}+\frac{3}{2}\\ n=-2m+4\end{matrix}\right.\Rightarrow \left\{\begin{matrix} m=1\\ n=2\end{matrix}\right.\Rightarrow K(1,2)\)

Từ đkđb có $K$ là trung điểm của $MP$. Do đó:

\(\left\{\begin{matrix} m=1=\frac{3+x_P}{2}\\ n=2=\frac{3+y_P}{2}\end{matrix}\right.\Rightarrow \left\{\begin{matrix} x_P=-1\\ y_P=1\end{matrix}\right.\Rightarrow P(-1,1)\)

AH
Akai Haruma
Giáo viên
30 tháng 1 2017

Câu 2:

a) Ta có \(\left\{\begin{matrix} (d):y=\frac{x}{2}-2\\ (d'):y=\frac{-3x}{2}+4\end{matrix}\right.\Rightarrow \) phương trình hoành độ giao điểm là:

\(\frac{x}{2}-2=\frac{-3x}{2}+4(1)\Leftrightarrow x=3\Rightarrow y=\frac{-1}{2}\)

Rõ ràng PT $(1)$ có nghiệm nên hai đường thẳng cắt nhau tại \(M(3,\frac{-1}{2})\)

b) Gọi PT đường thẳng cần tìm là $y=ax+b$

Vì đường thẳng đó vuông góc với $(d)$ nên \(\frac{a}{2}=-1\Rightarrow a=-2\)

Do $M$ thuộc đường thẳng đó nên \(-\frac{1}{2}=3(-2)+b\Rightarrow b=\frac{11}{2}\)

\(\Rightarrow \text{PTĐT}:y=-2x+\frac{11}{2}\)

2 tháng 7 2020

\(A\left(a;a+1\right);B\left(b;1-2b\right)\\ \Rightarrow\left\{{}\begin{matrix}2x_P=a+b=4\\2y_P=a+1+1-2b=2\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}a=\frac{8}{3}\\b=\frac{4}{3}\end{matrix}\right.\\ \Rightarrow A\left(\frac{8}{3};\frac{11}{3}\right);B\left(\frac{4}{3};-\frac{5}{3}\right)\\ \Rightarrow\overrightarrow{AB}\left(-\frac{4}{3};-\frac{16}{3}\right)\Rightarrow\overrightarrow{n}_{AB}\left(4;-1\right)\Rightarrow pt\text{ }AB:4x-y-7=0\)

NV
6 tháng 3 2023

d nhận \(\overrightarrow{n_d}=\left(1;1\right)\) là 1 vtpt

Gọi \(\overrightarrow{n}=\left(a;b\right)\) là 1 vtpt của \(\Delta\), do d và \(\Delta\) tạo với nhau 1 góc 60 độ

\(\Rightarrow\dfrac{\left|a.1+b.1\right|}{\sqrt{1^2+1^2}.\sqrt{a^2+b^2}}=cos60^0=\dfrac{1}{2}\)

\(\Rightarrow\sqrt{2}\left|a+b\right|=\sqrt{a^2+b^2}\)

\(\Leftrightarrow2\left(a+b\right)^2=a^2+b^2\)

\(\Rightarrow a^2+4ab+b^2=0\)

Chọn \(a=1\Rightarrow\left[{}\begin{matrix}b=-2-\sqrt{3}\\b=-2+\sqrt{3}\end{matrix}\right.\)

\(\Rightarrow\) Có 2 đường thẳng \(\Delta\) thỏa mãn:

\(\left[{}\begin{matrix}1\left(x-2\right)-\left(2+\sqrt{3}\right)\left(y+6\right)=0\\1\left(x-2\right)-\left(2-\sqrt{3}\right)\left(y+6\right)=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x-\left(2+\sqrt{3}\right)y-14-6\sqrt{3}=0\\x-\left(2-\sqrt{3}\right)y-14+6\sqrt{3}=0\end{matrix}\right.\)

NV
6 tháng 3 2023

Tương tự bài trước, ta có:

\(\dfrac{\left|a.1+b.1\right|}{\sqrt{2}.\sqrt{a^2+b^2}}=cos45^0=\dfrac{1}{\sqrt{2}}\)

\(\Leftrightarrow\left|a+b\right|=\sqrt{a^2+b^2}\Leftrightarrow\left(a+b\right)^2=a^2+b^2\)

\(\Leftrightarrow2ab=0\Rightarrow\left[{}\begin{matrix}a=0\\b=0\end{matrix}\right.\)

Với \(a=0\) chọn \(b=1\) ; với \(b=0\) chọn \(a=1\), vậy có 2 đường thẳng thỏa mãn:

\(\left[{}\begin{matrix}0\left(x-2\right)+1\left(y+6\right)=0\\1\left(x-2\right)+0\left(y+6\right)=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}y+6=0\\x-2=0\end{matrix}\right.\)

NV
27 tháng 4 2020

Đường tròn (C) tâm \(I\left(4;3\right)\) bán kính \(R=2\)

Gọi \(A\left(2a+6;a\right)\)\(C\left(0;c\right)\)

I là trung điểm AC \(\Rightarrow\left\{{}\begin{matrix}2a+6=8\\a+c=6\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a=1\\c=5\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}A\left(8;1\right)\\C\left(0;5\right)\end{matrix}\right.\)

\(\overrightarrow{AC}=\left(-8;4\right)=-4\left(2;-1\right)\)

\(\Rightarrow\) Đường thẳng BD nhận \(\left(2;-1\right)\) là 1 vtpt

Phương trình BD: \(2\left(x-4\right)-1\left(y-3\right)=0\Leftrightarrow2x-y-5=0\)

Gọi pt AB có dạng \(a\left(x-8\right)+b\left(y-1\right)=0\Leftrightarrow ax+by-8a-b=0\)

AB là tiếp tuyến của (C) \(\Rightarrow d\left(I;AB\right)=R\)

\(\Rightarrow\frac{\left|4a+3b-8a-b\right|}{\sqrt{a^2+b^2}}=2\Leftrightarrow\left|2a-b\right|=\sqrt{a^2+b^2}\)

\(\Leftrightarrow4a^2-4ab+b^2=a^2+b^2\Leftrightarrow3a^2-4ab=0\)

\(\Rightarrow\left[{}\begin{matrix}a=0\\3a=4b\end{matrix}\right.\) chọn \(a=4\Rightarrow b=3\)

Có 2 đường thẳng AB thỏa mãn: \(\left[{}\begin{matrix}y-1=0\\4x+3y-35=0\end{matrix}\right.\)

Tọa độ B là giao điểm AB và BD \(\Rightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}y=1\\2x-y-5=0\end{matrix}\right.\\\left\{{}\begin{matrix}4x+3y-35=0\\2x-y-5=0\end{matrix}\right.\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}B\left(3;1\right)\\B\left(5;5\right)\end{matrix}\right.\)

NV
5 tháng 5 2020

Đường tròn tâm \(O\left(0;0\right)\) bán kính \(R=2\)

a/ Tiếp tuyến d' song song d nên có dạng: \(3x-y+c=0\) \(\left(c\ne17\right)\)

Do d' là tiếp tuyến

\(\Leftrightarrow d\left(O;d'\right)=R\)

\(\Leftrightarrow\frac{\left|3.0-1.0+c\right|}{\sqrt{3^2+\left(-1\right)^2}}=2\Leftrightarrow\left|c\right|=2\sqrt{10}\Rightarrow c=\pm2\sqrt{10}\)

Có 2 tiếp tuyến thỏa mãn: \(\left[{}\begin{matrix}3x-y+2\sqrt{10}=0\\3x-y-2\sqrt{10}=0\end{matrix}\right.\)

b/ d' vuông góc d nên pt có dạng \(2x-y+c=0\)

\(d\left(O;d'\right)=R\Leftrightarrow\frac{\left|2.0-1.0+c\right|}{\sqrt{2^2+1^2}}=2\Rightarrow\left|c\right|=2\sqrt{5}\Rightarrow c=\pm2\sqrt{5}\)

Có 2 tiếp tuyến t/m: \(\left[{}\begin{matrix}2x-y+2\sqrt{5}=0\\2x-y-2\sqrt{5}=0\end{matrix}\right.\)

c/ Tiếp tuyến d' qua M nên pt có dạng:

\(a\left(x-2\right)+b\left(y+2\right)=0\Leftrightarrow ax+by-2a+2b=0\)

\(d\left(O;d'\right)=R\Leftrightarrow\frac{\left|0.a+0.b-2a+2b\right|}{\sqrt{a^2+b^2}}=2\)

\(\Leftrightarrow\left|a-b\right|=\sqrt{a^2+b^2}\)

\(\Leftrightarrow a^2-2ab+b^2=a^2+b^2\)

\(\Leftrightarrow2ab=0\Rightarrow\left[{}\begin{matrix}a=0\\b=0\end{matrix}\right.\)

Có 2 tiếp tuyến thỏa mãn: \(\left[{}\begin{matrix}x-2=0\\y+2=0\end{matrix}\right.\)

NV
5 tháng 5 2020

Chắc bạn viết sai đề, chưa bao giờ thấy đường tròn nào có pt bậc 4 như vậy cả

Pt đường tròn có dạng kiểu như \(x^2+y^2=4\)

Còn pt \(x^4+y^4=4\) nó có đồ thị như vầy:

Hỏi đáp Toán

Nhìn có "tròn" chút nào đâu? :D