K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 7 2019

Gọi \(A=d\cap\Delta\) =>tọa độ A ( 2;3)

lấy B(0,1) thuộc d . Gọi B' là ảnh của B qua Đ\(\Delta\)

vì BB' \(\perp\Delta\)nên \(\overrightarrow{u}=\left(3;-1\right)\) là vec to chỉ phương của BB'=> vecto phap tuyến curaBB': \(\overrightarrow{n}=\left(1;3\right)\)

Gọi H là giao điểm BB' và \(\Delta\)

pt tổng quát BB': 1.(x-0) +3.(y-1)=0

<=> x +3y -3=0

=> H(3/5; -6/5)

=> B' rồi => \(\overrightarrow{AB'}\)=> phương trình d'

21 tháng 10 2018

Đáp án D

  T u → M = M ' => 3x’ + ( y’ – 3) – 2 = 0   3x’ + y’ – 5 = 0

 Phương trìnhđường thẳng cần tìm: 3x + y – 5 = 0

a: Tọa độ M' là:

\(\left\{{}\begin{matrix}x=2+1=3\\y=-1-3=-4\end{matrix}\right.\)

Lấy A(-1;1) thuộc (d)

=>A'(0;-2)

Thay x=0 và y=-2 vào (d'): 2x-3y+c=0, ta được:

c+2*0-3*(-2)=0

=>c=-6

b: Tọa độ M' là:

\(\left\{{}\begin{matrix}x=2\cdot cos\left(-90\right)-\left(-1\right)\cdot sin\left(-90\right)=-1\\y=2\cdot sin\left(-90\right)+\left(-1\right)\cdot cos\left(-90\right)=-2\end{matrix}\right.\)

A(-1;1)

Tọa độ A' là: 

\(\left\{{}\begin{matrix}x=-1\cdot cos\left(-90\right)-1\cdot sin\left(-90\right)=1\\y=-1\cdot sin\left(-90\right)+1\cdot cos\left(-90\right)=1\end{matrix}\right.\)

Thay x=1 và y=1 vào 3x+2y+c=0, ta được:

c+3+2=0

=>c=-5

Chọn C

1. Trg mp Oxy, cho đt d: x - y + 4 = 0. Hỏi trg các đt sau đt nào có thể biến thành d qua 1 phép đối xứng tâm? a. 2x + y - 4 = 0 b. x + y - 1 = 0 c. 2x - 2y + 1 = 0 d. 2x + 2y - 3 = 0 2. Cho 2 đt (C): \(x^2+y^2=1\) và (C'): \(\left(x-4\right)^2+\left(y-2\right)^2=1\). Tìm tọa độ tâm đối xứng biến (C) thành (C') 3. Trg mp Oxy cho điểm M (2;1). Hỏi phép dời hình có đc = cách thực hiện liên tiếp phép đối...
Đọc tiếp

1. Trg mp Oxy, cho đt d: x - y + 4 = 0. Hỏi trg các đt sau đt nào có thể biến thành d qua 1 phép đối xứng tâm?

a. 2x + y - 4 = 0 b. x + y - 1 = 0 c. 2x - 2y + 1 = 0 d. 2x + 2y - 3 = 0

2. Cho 2 đt (C): \(x^2+y^2=1\) và (C'): \(\left(x-4\right)^2+\left(y-2\right)^2=1\). Tìm tọa độ tâm đối xứng biến (C) thành (C')

3. Trg mp Oxy cho điểm M (2;1). Hỏi phép dời hình có đc = cách thực hiện liên tiếp phép đối xứng tâm O và phép tịnh tiến the \(\overrightarrow{v}=\left(2;3\right)\) biến điểm M thành điểm nào trg các điểm sau?

a. (1;3) b. (2;0) c. (0;2) d. (4;4)

4. Trg mp Oxy cho đt d có pt: x + y - 2 = 0. Hỏi phép dời hình có đc = cách thực hiện liên tiếp phép đối xứng tâm O và phép tịnh tiến theo vecto \(\overrightarrow{v}=\left(3;2\right)\) biến đt d thành đt nà trg các đt sau?

a. 3x + 3y - 2 = 0 b. x - y + 2 = 0 c. x + y + 2 = 0 d. x + y - 3 = 0

5. Trg mp Oxy cho đt (C) có pt: \(\left(x-1\right)^2+\left(y+2\right)^2=4\). Hỏi phép dời hình có đc = cách thực hiện liên tiếp phép đối cứng qua tâm O và phép tịnh tiến theo vecto \(\overrightarrow{v}=\left(2;3\right)\) biến (C) thành đt nào trg các đt có pt sau?

a. \(x^2+y^2=4\) b. \(\left(x-2\right)^2+\left(y-6\right)^2=4\) c. \(\left(x-2\right)^2+\left(x-3\right)^2=4\) d. Đáp án khác

0
NV
18 tháng 10 2020

1.

Do \(\overrightarrow{v}\) cùng phương với \(\overrightarrow{u}\) nên \(\overrightarrow{v}=\left(a;a\right)\) với a là số thực khác 0

Chọn \(M\left(0;0\right)\) là 1 điểm thuộc d

Gọi M' là ảnh của M qua phép tịnh tiến \(\overrightarrow{v}\Rightarrow M'\in d'\)

\(\left\{{}\begin{matrix}x_{M'}=a+0=a\\y_{M'}=a+0=a\end{matrix}\right.\) \(\Rightarrow M'\left(a;a\right)\)

Thay vào pt d' ta được:

\(a+a-4=0\Rightarrow a=2\)

\(\Rightarrow\overrightarrow{v}=\left(2;2\right)\)

\(\Rightarrow\left|\overrightarrow{v}\right|=2\sqrt{2}\)

NV
18 tháng 10 2020

2.

Gọi \(\overrightarrow{u}=\left(a;b\right)\)

Gọi \(A\left(0;1\right)\) là 1 điểm thuộc d

Gọi A' là ảnh của A qua phép tịnh tiến \(\overrightarrow{u}\Rightarrow A'\in d'\)

Ta có: \(\left\{{}\begin{matrix}x_{A'}=a\\y_{A'}=b+1\end{matrix}\right.\)

Thay tọa độ A' vào pt d' ta được: \(a+b+1-5=0\Leftrightarrow a+b=4\)

Ta có:

\(\left|\overrightarrow{u}\right|=\sqrt{a^2+b^2}\ge\sqrt{\frac{1}{2}\left(a+b\right)^2}=2\sqrt{2}\)

\(\Rightarrow\left|\overrightarrow{u}\right|_{min}=2\sqrt{2}\) khi \(a=b=2\)

24 tháng 5 2017

Phép dời hình và phép đồng dạng trong mặt phẳng