Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
đầu tiên bn tìm VTPT của 2 đường thẳng d1 và d2 nha
áp dụng công thức góc giữa 2 đường thẳng thì trong đó sẽ có ẩn là m kh sao .biến đổi bn sẽ ra 1 phương trình bậc 2 theo m gải tìm được hai giá trị m . rồi nhân lại nha. chỗ nào kh rõ bn có thể hỏi lại nha!!
Do \(M\in d_3\) \(\Rightarrow M\left(2a;a\right)\)
\(\frac{\left|2a+a+3\right|}{\sqrt{1^2+1^2}}=2\frac{\left|2a-a-4\right|}{\sqrt{1^2+\left(-1\right)^2}}\Leftrightarrow\left|3a+3\right|=2\left|a-4\right|\)
\(\Leftrightarrow\left(3a+3\right)^2=4\left(a-4\right)^2\Leftrightarrow9a^2+18a+9=4a^2-32a+64\)
\(\Leftrightarrow5a^2+50a-55=0\Rightarrow\left[{}\begin{matrix}a=1\\a=-11\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}M\left(2;1\right)\\M\left(-22;-11\right)\end{matrix}\right.\)
Bài 2:
Tọa độ giao điểm của Δ1 và Δ2 là:
\(\left\{{}\begin{matrix}2x+y=4\\5x-2y=-3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{5}{9}\\y=\dfrac{26}{9}\end{matrix}\right.\)
Thay x=5/9 và y=26/9 vào Δ3, ta được:
\(\dfrac{5}{9}m+\dfrac{26}{3}-2=0\)
=>5/9m=-20/3
hay m=-12
a: Thay x=-1 và y=3 vào (d), ta được:
-2-m+1=3
=>-1-m=3
=>-m=4
hay m=-4
b: PTHĐGĐ là:
\(\dfrac{1}{2}x^2-2x+m-1=0\)
\(\Leftrightarrow x^2-4x+2m-2=0\)
\(\text{Δ}=\left(-4\right)^2-4\left(2m-2\right)\)
\(=16-8m+8=-8m+24\)
Để (d) cắt (P) tại hai điểm phân biệt thì -8m+24>0
hay m<3
Theo Vi-et, ta được:
\(\left\{{}\begin{matrix}x_1+x_2=4\\x_1x_2=2m-2\end{matrix}\right.\)
Theo đề, ta có: \(x_1\cdot x_2\left(x_1^2+x_2^2\right)=-48\)
=>\(\Leftrightarrow\left(2m-2\right)\cdot\left[4^2-2\left(2m-2\right)\right]=-48\)
\(\Leftrightarrow\left(m-1\right)\left(16-4m+4\right)=-24\)
\(\Leftrightarrow\left(m-1\right)\left(-4m+20\right)=-24\)
\(\Leftrightarrow\left(m-1\right)\left(m-5\right)=6\)
\(\Leftrightarrow m^2-6m-1=0\)
\(\Leftrightarrow\left[{}\begin{matrix}m=3+\sqrt{10}\left(loại\right)\\m=3-\sqrt{10}\left(nhận\right)\end{matrix}\right.\)
1) d cắt trục hoành tại điểm A(1:0)=>0=a*1+b (1)
d// vs đường thẳng y=-2+2003=> a=-2 và b\(\ne\)2003 (2)
từ (1) và (2)=>\(\left\{{}\begin{matrix}a=-2\\b=2\left(\ne2003\right)\end{matrix}\right.\)
Vậy d:y=-2x+2
Bài 2:
1: Tọa độ A là: 2x+2=-x+2 và y=2x+2
=>x=0 và y=2
Tọa độ B là: y=0 và 2x+2=0
=>x=-1 và y=0
Tọa độ C là:
y=0 và 2-x=0
=>C(2;0)
2: Để (d3) cắt cả (d1) và (d2) thì \(\left\{{}\begin{matrix}m< >2\\m< >-1\end{matrix}\right.\Leftrightarrow m\notin\left\{2;-1\right\}\)
a: Thay y=2 vào (P), ta được: \(x^2=2\)
\(\Leftrightarrow x\in\left\{\sqrt{2};-\sqrt{2}\right\}\)
b: Phương trình hoành độ giao điểm là:
\(x^2-2mx+2m-3=0\)
\(\text{Δ}=\left(-2m\right)^2-4\left(2m-3\right)\)
\(=4m^2-8m+12\)
\(=4m^2-8m+4+8\)
\(=\left(2m-2\right)^2+8>0\)
Do đó: (P) luôn cắt (d) tại hai điểm phân biệt
ta có : I = d1 giao d2
=> I(-1,3)
Có (C) tiếp xúc vs dthg d3
=> d(I,d3)=\(\frac{\left|3.\left(-1\right)+4.3-2\right|}{\sqrt{3^2+4^2}}\)=\(\frac{7}{5}\) =R
=> ptr (C): (x+1)2+(y-3)2=\(\frac{49}{25}\)