K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(\left(d_1\right)y=\sqrt{m-1}x+3\)

\(\left(d_2\right)y=3x+1\)

\(\left(d_3\right)y=2x-3\)

Hoành độ giao điểm của 3 đường thẳng là nghiệm của phương trình:

\(3x+1=2x-3\Leftrightarrow x=-4\)

Thay \(x=-4\) vào phương trình đường thẳng \(\left(d_2\right)\), ta có:

\(y=3\left(-4\right)+1\Leftrightarrow y=-11\)

do đó điểm có toạ độ \(\left(-4;-11\right)\) thuộc đồ thị hàm số \(\left(d_1\right)\)

Thay \(x=-4,y=-11\) vào phương trình đường thẳng \(\left(d_1\right)\), ta có:

\(-11=-4\sqrt{m-1}+3\)

\(\Leftrightarrow-4\sqrt{m-1}=-14\)

\(\Leftrightarrow\sqrt{m-1}=3,5\)

\(\Leftrightarrow m=13,25\)

7 tháng 12 2018

a) Để (d1) song song vơi (d2) thì:

a = a'

\(\Leftrightarrow m-1=3\)

\(\Leftrightarrow m=4\)

Vậy (d1) // (d2) khi m = 4 

b) Để (d1) và (d2) cắt nhau tại 1 điểm trên trục hoành thì:

\(\Rightarrow\)y = 0

\(\Leftrightarrow0=3x+1\)

\(\Leftrightarrow3x+1=0\)

\(\Leftrightarrow3x=1\)

\(\Leftrightarrow x=\frac{1}{3}\)

Với x = \(\frac{1}{3}\)và y = 0 ta có:

(m - 1).\(\frac{1}{3}\)+ 2m - 5 = 0

\(\Leftrightarrow\frac{m-1}{3}+\frac{6m}{3}-\frac{15}{3}=0\)

\(\Leftrightarrow m-1+6m-5=0\) 

\(\Leftrightarrow7m=6\)

\(\Leftrightarrow m=\frac{6}{7}\)

Vậy (d1) cắt (d2) tại 1 điểm trên trục hoành khi m = \(\frac{6}{7}\)

9 tháng 4 2022

Phương trình hoành độ giao điểm: 

x2 = 2x - m

<=> x2 - 2x + m = 0

Để (d) cắt (P) tại 2 điểm phân biệt thì \(\Delta>0\)

<=> (-1)2 - m > 0

<=> 1 - m > 0

<=> m < 1

Ta có: y1 = x12  

          y2 = x22 

y1 + y2 + x12x22 = 6(x1 + x2)

<=> x12 + x22 + x12x22 = 6(x1 + x2)

<=> (x1 + x2)- 2x1x2 + (x1x2)2 = 6(x1 + x2)

Theo viet, ta có: \(\hept{\begin{cases}x_1+x_2=-\frac{b}{a}=2\\x_1x_2=\frac{c}{a}=m\end{cases}}\)

<=> 22 - 2m + m2 = 6.2

<=> 4 - 2m + m2 = 12

<=> 4 - 2m + m2 - 12 = 0

<=> m2 - 2m - 8 = 0

<=> m = 4 (ktm) hoặc m = -2 (tm)

=> m = -2

1. Cho hàm số y =( 2 - m )x +m - 1 ( d ) a.Tìm m để y là hàm số bậc nhất b.Tìm m để y là hầm số nghịch biến c.Tìm m để ( d ) song song với ( d' ) : y = 3x + 2 d.Tìm m để ( d ) cắt ( d'' ) : y = -x +4 tại một điểm thuộc trục tung e.Tìm m để ( d) ⊥ ( d'' ) 2. a) Vẽ đồ thị của các hàm số sau trên cùng một mặt phẳng tọa độ y = x+2 ( d1 ) và y = -\(\frac{1}{2}x+2\) ( d2 ) b.Gọi giao điểm của ( d1 ) và...
Đọc tiếp

1. Cho hàm số y =( 2 - m )x +m - 1 ( d )
a.Tìm m để y là hàm số bậc nhất
b.Tìm m để y là hầm số nghịch biến
c.Tìm m để ( d ) song song với ( d' ) : y = 3x + 2
d.Tìm m để ( d ) cắt ( d'' ) : y = -x +4 tại một điểm thuộc trục tung
e.Tìm m để ( d) ⊥ ( d'' )

2. a) Vẽ đồ thị của các hàm số sau trên cùng một mặt phẳng tọa độ
y = x+2 ( d1 ) và y = -\(\frac{1}{2}x+2\) ( d2 )
b.Gọi giao điểm của ( d1 ) và ( d2 ) với trục Ox là M ,N. Gọi giao điểm của ( d1 ) và ( d2 ) là P .Xác định tọa độ của các điểm M ,N ,P
c.Tính độ dài các cạnh của tam giác MNP ( đơn vị cm)
d.Tìm điểm thuộc đường thẳng y = x + 2 ( d1 ) có hoành độ và tung độ đối nhau

3.Trong hệ trục tọa độ ÕY cho hàm số y = -x + m
a.Tìm giá trị của m để đồ thị của hàm số đi qua A( -1; 3 )
b.Xác định m để đồ thị của hàm số (*) cắt đồ thị của hàm số y = 2x -1 tại điểm nằm trong góc vuông phần tư thứIV
c.Chứng tỏ giao điểm của đường thẳng y = -x +m (*) với đường thẳng y = 2x -m luôn nằm trên một đường thẳng cố định khi m thay đổi

0
23 tháng 2 2020

Hỏi đáp Toán

23 tháng 2 2020

a, bạn tự vẽ

b, Gọi giao điểm của 2 đường thẳng trên là M(x1;y1)

tọa độ giao điểm của (d1) và (d2) là nghiệm của hpt

\(\left\{{}\begin{matrix}y_1=2x_1-7\\y_1=-x_1-1\end{matrix}\right.\)<=>\(\left\{{}\begin{matrix}x_1=2\\y_1=-3\end{matrix}\right.\)

Vậy...

c, phương trình đường thẳng (d3) có dạng y=ax+b

Vì đt(d3) song song với (d2) và cắt đường thẳng (d1) tại một điểm nằm trên trục tung nên ta được a=-1, x=0,y=-7

=> b=-7

Thay a=-1, b=-7 vào cths y=ax+b ta được

y=-x-7

NV
6 tháng 7 2020

Pt hoành độ giao điểm:

\(\frac{1}{2}x^2=-x+m\Leftrightarrow x^2+2x-2m=0\)

\(\Delta'=1+2m>0\Rightarrow m>-\frac{1}{2}\)

Khi đó theo Viet: \(\left\{{}\begin{matrix}x_1+x_2=-2\\x_1x_2=-2m\end{matrix}\right.\)

\(x_1x_2+y_1y_2=5\)

\(\Leftrightarrow x_1x_2+\frac{1}{4}x_1^2x_2^2=5\)

\(\Leftrightarrow\left(x_1x_2\right)^2+4x_1x_2-20=0\)

\(\Rightarrow\left[{}\begin{matrix}x_1x_2=-2+2\sqrt{6}\\x_1x_2=-2-2\sqrt{6}\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}-2m=-2+2\sqrt{6}\\-2m=-2-2\sqrt{6}\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}m=\sqrt{6}-1\\m=\sqrt{6}+1\end{matrix}\right.\)