K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 3 2017

Ta xét

\(a+\dfrac{1}{a}>2\Rightarrow\left(a+\dfrac{1}{a}\right)^2>4\Rightarrow a^2+2+\dfrac{1}{a^2}>4\Rightarrow a^2+\dfrac{1}{a^2}>2\)

Ta có :

\(3.\left(a^2+\dfrac{1}{a^2}\right)>3.2=6\)(1)

Lại có : \(x^2\ge0;y^4\ge0;z^6\ge0\left(\forall x,y,z\right)\Rightarrow x^2.y^4.z^6\ge0\)(2)

Từ (1) và (2) \(\Rightarrow A\ge0\)

Để A = 0

\(\Rightarrow\left[{}\begin{matrix}x^2=0\Rightarrow x=0\\y^4=0\Rightarrow y=0\\z^6=0\Rightarrow z=0\end{matrix}\right.\)thì A sẽ bằng 0

Chúc bạn học tốt =))ok

đơn thức là học ở lớp 7

các bài này có trong lớp 7

=>đó là bài lớp 7

=>đpcm

20 tháng 3 2017

lũy thừa của a,x,y,z đều chẵn nên tổng sẽ dương với mọi x,y,z

x = 0 hoặc y = 0 hoặc z = 0 thì cả tích bằng 0

24 tháng 3 2017

a) ta có \(a^2\ge0;\dfrac{1}{a^2}\ge0\Rightarrow a^2+\dfrac{1}{a^2}\ge0\)

suy ra \(3\left(a^2+\dfrac{1}{a^2}\right)\ge0;\)\(x^2\ge0;y^4\ge0;z^6\ge0\Rightarrow x^2y^4z^6\ge0\)

suy ra \(A=3\left(a^2+\dfrac{1}{a^2}\right)x^2y^4z^6\ge0\)

vậy đơn thức A luôn luôn không âm với mọi biến x, y, z

b) muốn A = 0 thì (x;y;z) = (0;0;0)

22 tháng 7 2020

a) Thay x = \(\sqrt{2}\)vào biểu thức ta có : 

\(A=\left(\sqrt{2}+1\right)\left[\left(\sqrt{2}\right)^2-2\right]=\left(\sqrt{2}+1\right).\left(2-2\right)=0\)

Giá trị của A khi x = \(\sqrt{2}\)là 0

b) Ta có \(B=\frac{2x^23x-2}{x+2}=\frac{6x^3-2}{x+2}\)

Thay x = 3 vào B ta có : \(B=\frac{6.3^3-2}{3+2}=\frac{160}{5}=32\)

Giá trị của B khi x = 3 là 32

d) Đặt \(\frac{x}{3}=\frac{y}{5}=k\Rightarrow x=3k;y=5k\)

Khi đó D = \(\frac{5\left(3k\right)^2+3.\left(5k\right)^2}{10\left(3k\right)^2-3\left(5k\right)^2}=\frac{45k^2+75k^2}{90k^2-75k^2}=\frac{120k^2}{15k^2}=8\)

=> D = 8

e) E = \(\left(1+\frac{z}{x}\right)\left(1+\frac{x}{y}\right)\left(1+\frac{y}{z}\right)=\frac{x+z}{x}.\frac{x+y}{y}.\frac{y+z}{z}=\frac{\left(x+y\right)\left(x+z\right)\left(y+z\right)}{xyz}\)

Lại có x + y + z = 0

=> x + y = -z

=> x + z = - y 

=> y + z = - x

Khi đó E = \(\frac{-xyz}{xyz}=-1\)

\(\left(a^5b^2xy^2z^{n-1}\right)\left(-\frac{5}{3}ax^5y^2z\right)^3=-\frac{125}{27}.a^8b^2x^{16}y^7z^{n+2}\)

Hệ số \(\frac{-125}{27}\)

Biến : a8b2x16y7zn + 2

22 tháng 7 2020

câu c bạn ghi đề rõ hơn thì mình sẽ giải luôn

31 tháng 5 2020

\(A=3\left(a^2+\left(\frac{1}{a}\right)^2\right)x^2y^4z^6\)

Ta có : \(a^2;\left(\frac{1}{a}\right)^2\ge0\forall a\Rightarrow3\left(a^2+\left(\frac{1}{a}\right)^2\right)\ge0\forall a\)

\(x^2;y^4;z^6\ge0\forall x;y;z\)

=> \(A=3\left(a^2+\left(\frac{1}{a}\right)^2\right)x^2y^4z^6\ge0\)

=> A luôn nhận giá trị không âm với mọi x, y, z

Để A = 0 => Ít nhất một giá trị = 0

=> Hoặc x = 0 ; y = 0 ; z = 0 thì A = 0