Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: \(A=\dfrac{-1}{2}x^2y\cdot\dfrac{3}{2}xy=-\dfrac{3}{4}x^3y^2\)
\(B=x^2y^2\cdot y=x^2y^3\)
\(C=-\dfrac{1}{8}y^3x^2=-\dfrac{1}{8}x^2y^3\)
\(D=-x^2y^2\cdot\dfrac{-2}{3}x^3y=\dfrac{2}{3}x^5y^3\)
Các đa thức đồng dạng là B và C
b: \(\left\{{}\begin{matrix}-\dfrac{3}{4}x^3y^2>0\\-\dfrac{1}{8}x^2y^3>0\\\dfrac{2}{3}x^5y^3>0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x^3< 0\\y^3< 0\\xy>0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x< 0\\y< 0\end{matrix}\right.\)
1.\(A=-\dfrac{3}{4}x^2yz;B=\dfrac{1}{3}xy^2;C=-\dfrac{8}{7}xy^2\)
\(A.\left(B+C\right)=-\dfrac{3}{4}x^2yz\left[\dfrac{1}{3}xy^2+\left(-\dfrac{8}{7}xy^2\right)\right]\)
\(=-\dfrac{3}{4}x^2yz\left(\dfrac{1}{3}xy^2-\dfrac{8}{7}xy^2\right)\)
\(=\left(-\dfrac{3}{4}x^2yz\right)\dfrac{1}{3}xy^2-\left(-\dfrac{3}{4}x^2yz\right)\dfrac{8}{7}xy^2\)
\(=-\dfrac{1}{4}x^3y^3z+\dfrac{6}{7}x^3y^3z\)
1. Ta có: \(-\dfrac{3}{4}x^2yz;B=\dfrac{1}{3}xy^2;C=-\dfrac{8}{7}xy^2\)
\(B+C=\dfrac{1}{3}xy^2-\dfrac{8}{7}xy^2=-\dfrac{17}{21}xy^2\)
\(A.\left(B+C\right)=\left(-\dfrac{3}{4}x^2yz\right).\left(-\dfrac{17}{21}xy^2\right)\)
\(\Rightarrow A.\left(B+C\right)=\dfrac{17}{28}x^3y^3z\)
\(A=x^3\left(-\dfrac{5}{4}x^2y\right)\left(\dfrac{2}{5}x^3y^4\right)\)
\(=\left(-\dfrac{5}{4}\cdot\dfrac{2}{5}\right)\left(x^3\cdot x^2\cdot x^3\right)\left(y\cdot y^4\right)\)
\(=-\dfrac{1}{2}x^8y^5\)
Bậc: 13 ; Hệ số: \(-\dfrac{1}{2}\) ; Biến: \(x^8y^5\)
\(B=\left(-\dfrac{3}{4}x^5y^4\right)\left(xy^2\right)\left(-\dfrac{8}{9}x^2y^5\right)\)
\(=\left[-\dfrac{3}{4}\cdot\left(-\dfrac{8}{9}\right)\right]\left(x^5\cdot x\cdot x^2\right)\left(y^4\cdot y^2\cdot y^5\right)\)
\(=\dfrac{2}{3}x^8y^{11}\)
Bậc: 19 ; Hệ số: \(\dfrac{2}{3}\) ; Biến: \(x^8y^{11}\)
a: \(A=3xy^2\cdot\dfrac{1}{4}x^4y^2\cdot4az^2=3ax^5y^4z^2\)
Hệ số là 3a
Bậc là 11
b: Đồng dạng là \(B=2x^5y^4z^2\)
Tổng là: \(A+B=\left(3a+2\right)\cdot x^5y^4z^2\)