Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Năm sau tui thi THPT quốc gia rồi :v, không biết bạn Hoàng Hà còn cần câu này khum nhỉ?
A B x y O C D M
a) Xét \(\Delta\)CAO và \(\Delta\)OBD: ^CAO=^OBD=900; ^AOC=^BDO (Cùng phụ ^BOD)
=> \(\Delta\)CAO ~ \(\Delta\)OBD (g.g) => \(\frac{AC}{BO}=\frac{AO}{BD}\Rightarrow AO.BO=AC.BD\)
\(\Rightarrow\frac{1}{2}AB.\frac{1}{2}AB=AC.BD\Leftrightarrow\frac{1}{4}AB^2=AC.BD\)
\(\Leftrightarrow AB^2=4.AC.BD\)(đpcm)
b) Ta có: \(\Delta\)CAO ~ \(\Delta\)OBD (cmt) => \(\frac{AC}{OB}=\frac{OC}{OD}\) hay \(\frac{AC}{OA}=\frac{OC}{OD}\) (Do OA=OB)
=> \(\frac{AC}{OC}=\frac{OA}{OD}\)=> \(\Delta\)CAO ~ \(\Delta\)COD (Cạnh huyền cạnh góc vuông)
=> ^ACO=^OCD hay ^ACO=^MCO => \(\Delta\)CAO=\(\Delta\)CMO (Cạnh huyền góc nhọn)
=> AC=CM (đpcm).
Xét \(\Delta OAC\)và \(\Delta DBO\)có :
\(\widehat{CAO}=\widehat{DBO}\left(=90^o\right)\); \(\widehat{COA}=\widehat{ODB}\)( cùng phụ \(\widehat{DOB}\))
\(\Rightarrow\)\(\Delta OAC\)~ \(\Delta DBO\)( g . g )
\(\Rightarrow\)\(\frac{OA}{BD}=\frac{AC}{BO}\) \(\Rightarrow\)OA . OB = BD . AC \(\Rightarrow\)AB2 = 4BD . AC
b) \(\Delta OAC\)~ \(\Delta DBO\)(g.g) \(\Rightarrow\)\(\frac{AC}{AO}=\frac{OC}{OD}\)
xét \(\Delta OAC\)và \(\Delta DOC\)có : \(\frac{AC}{AO}=\frac{OC}{OD}\); \(\widehat{CAO}=\widehat{COD}=90^o\)
\(\Rightarrow\)\(\Delta OAC\)~ \(\Delta DOC\)(c.g.c) \(\Rightarrow\)\(\widehat{ACO}=\widehat{OCD}\)
xét \(\Delta OAC\)và \(\Delta MCO\)có : \(\widehat{ACO}=\widehat{OCD}\); CO ( chung )
\(\Rightarrow\)\(\Delta ACO=\Delta MCO\left(ch-gn\right)\)\(\Rightarrow\)CA = CM ; OA = OM ;
c) OC là đường trung trực AM \(\Rightarrow\)OC \(\perp\)AM
Mặt khác : OA = OB = OM \(\Rightarrow\)\(\Delta AMB\)vuông tại M
\(\Rightarrow\)OC // BM
gọi gđ BM với AC là I
\(\Delta ABI\)có OC đi qua trung điểm AB và OC // BI \(\Rightarrow\)IC = AC
gọi K là gđ BC với MH
MH // AI \(\Rightarrow\)\(\frac{MK}{IC}=\frac{BK}{BC}=\frac{KH}{AC}\) \(\Rightarrow\)BK = KH
\(\Rightarrow\)BC đi qua trung điểm MH
d) tứ giác ABDC là hình thang vuông \(\Rightarrow\)\(S_{ABDC}=\frac{1}{2}.\left(AC+BD\right).AB\)
Ta có : \(AC+BD\ge2\sqrt{AC.BD}=AB\)
\(\Rightarrow\)\(S_{ABDC}=\frac{1}{2}.\left(AC+BD\right).AB\ge\frac{1}{2}.AB^2\)
Dấu " = " xảy ra \(\Leftrightarrow\)AC = BD = \(\frac{AB}{2}=OA\)
Vậy C thuộc Ax và cách A 1 khoảng bằng OA
1:Gọi giao của DO và CB là H
Xét ΔOAD vuông tại A và ΔOBH vuông tại B có
OA=OB
góc AOD=góc BOH
=>ΔOAD=ΔOBH
=>OD=OH
=>ΔCDH cân tại C
=>ΔAOD đồng dạng với ΔBOH
Xét ΔBOH vuông tại B và ΔOCH vuông tại O có
góc BHO chung
=>ΔBOH đồng dang với ΔOCH
=>ΔAOD đồng dạng với ΔOCH
2: ΔCHD cân tại C
=>góc CDH=góc CHD=góc ADH
=>DH là phân giác của góc ADC
a:
Sửa đề: Chứng minh ΔCNB~ΔAMC
Ta có: \(\widehat{ICA}+\widehat{ICB}=\widehat{ACB}=90^0\)
\(\widehat{ICB}+\widehat{NCB}=\widehat{ICN}=90^0\)
Do đó: \(\widehat{ICA}=\widehat{NCB}\)
Ta có: \(\widehat{NCB}+\widehat{ACB}+\widehat{MCA}=180^0\)
=>\(\widehat{NCB}+\widehat{MCA}=180^0-90^0=90^0\)
mà \(\widehat{NCB}+\widehat{NBC}=90^0\)(ΔNBC vuông tại N)
nên \(\widehat{NBC}=\widehat{MCA}\)
Xét ΔCNB vuông tại N và ΔAMC vuông tại M có
\(\widehat{CBN}=\widehat{ACM}\)
Do đó: ΔCNB~ΔAMC
b: Xét tứ giác ICNB có \(\widehat{ICN}+\widehat{IBN}=90^0+90^0=180^0\)
nên ICNB là tứ giác nội tiếp
=>\(\widehat{INC}=\widehat{IBC}\)
=>\(\widehat{INC}=\widehat{ABC}\)
Xét ΔCNI và ΔCBA có
\(\widehat{INC}=\widehat{ABC}\)
\(\widehat{NCI}=\widehat{BCA}\left(=90^0\right)\)
Do đó: ΔCNI~ΔCBA
c: Xét tứ giác AMCI có
\(\widehat{MAI}+\widehat{MCI}=90^0+90^0=180^0\)
=>AMCI là tứ giác nội tiếp
=>\(\widehat{MAC}=\widehat{MIC}\)
Vì CIBN là tứ giác nội tiếp
nên \(\widehat{CIN}=\widehat{CBN}\)
Ta có: \(\widehat{MAC}+\widehat{MCA}+\widehat{CBN}+\widehat{NCB}=90^0+90^0=180^0\)
=>\(\widehat{MAC}+\widehat{CBN}+90^0=180^0\)
=>\(\widehat{MAC}+\widehat{CBN}=90^0\)
=>\(\widehat{MIC}+\widehat{NIC}=90^0\)
=>\(\widehat{MIN}=90^0\)