K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 12 2023

ta có: I là trung điểm của AB

=>\(IA=IB=\dfrac{AB}{2}\)

M là trung điểm của IB

=>\(MI=MB=\dfrac{IB}{2}=\dfrac{AB}{4}\)

AM=AI+IM=1/2AB+1/4AB=3/4AB

=>AM=MB

=>\(\overrightarrow{AM}=3\overrightarrow{MB}\)

=>\(\overrightarrow{AM}-3\overrightarrow{MB}=\overrightarrow{0}\)

=>\(\overrightarrow{AM}+3\overrightarrow{BM}=\overrightarrow{0}\)

=>Chọn C

16 tháng 12 2022

Chọn C

30 tháng 3 2017

Câu C: \(\overrightarrow{IA}=-\overrightarrow{IB}\)

AH
Akai Haruma
Giáo viên
17 tháng 2 2020

Lời giải:

$AB=8; AC=9; BC=10; BM=7; CM=3$

Áp dụng định lý cosin cho tam giác $ABM$ và $ACM$ ta có:

$AB^2=BM^2+AM^2-2.BM.AM.\cos \widehat{AMB}$

$AC^2=CM^2+AM^2-2.CM.AM\cos \widehat{AMC}$

$\Rightarrow$

$CM.AB^2=CM.BM^2+CM.AM^2-2BM.AM.CM\cos \widehat{AMB}$

$BM.AC^2=BM.CM^2+BM.AM^2-2CM.AM.BM\cos \widehat{AMC}$

Cộng theo vế:

$CM.AB^2+BM.AC^2=CM.BM^2+BM.CM^2+CM.AM^2+BM.AM^2$

$\Leftrightarrow 3.8^2+7.9^2=3.7^2+7.3^2+10.AM^2$

$\Rightarrow AM=\sqrt{\frac{549}{10}}$

AH
Akai Haruma
Giáo viên
2 tháng 2 2020

Lời giải:

$AB=8; AC=9; BC=10; BM=7; CM=3$

Áp dụng định lý cosin cho tam giác $ABM$ và $ACM$ ta có:

$AB^2=BM^2+AM^2-2.BM.AM.\cos \widehat{AMB}$

$AC^2=CM^2+AM^2-2.CM.AM\cos \widehat{AMC}$

$\Rightarrow$

$CM.AB^2=CM.BM^2+CM.AM^2-2BM.AM.CM\cos \widehat{AMB}$

$BM.AC^2=BM.CM^2+BM.AM^2-2CM.AM.BM\cos \widehat{AMC}$

Cộng theo vế:

$CM.AB^2+BM.AC^2=CM.BM^2+BM.CM^2+CM.AM^2+BM.AM^2$

$\Leftrightarrow 3.8^2+7.9^2=3.7^2+7.3^2+10.AM^2$

$\Rightarrow AM=\sqrt{\frac{549}{10}}$

20 tháng 11 2022

Câu 1C
Câu 2: B