K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 12 2021

hình ông tự vẽ nha 
kẻ OH vuông góc với CD
Kẻ OK là trung tuyến của  tam giác CMD
xét tam giác CMD vuông tại M có
MK=CK = 1/2 CD (MK là tiếp tuyến )
=> CKM là tam giác cân, cân tại K 
=> góc MKC = góc KMC 
AC vuông góc với  AB
BD vuông góc với AB
=> AC // BD
=>ACBD là hình thang
AM = MB
CK=KD
=>MK là đường trung bình 
=> MK // CA 
=> góc ACM = góc KMC 
mà góc KMC = góc KCM (cmt)
=> góc ACM = góc KCM
=> góc HMC= góc CMA (cùng phụ 2 góc đó) 
xét tam giác MAC và tam giác MHC có:
góc CAM = góc CHM = 90 độ
góc ACM= góc HCM ( cmt)
=> góc HMC= góc CMA
=> tam giác MAC = tam giác MHC
=> HM = AM mà  HM vuông CD => ĐPCM 
bài có ít sai sót ông xem thử nha 

29 tháng 11 2018

a) Theo t/c 2 tiếp tuyến cắt nhau, ta có

góc AOC = góc COM 

góc MOD = góc DOB

=> COM +MOD =AOC +BOD = 1/2 AOB = 90o (đpcm)

b) Xét tam giác AOC và tg BDO

Có góc AOC = góc BDO ( cùng phụ BOD)'

      góc ACO = góc BOD ( cùng phụ AOC )

=> tg AOC đồng dạng tg BDO (gg)

=> \(\frac{AC}{AO}=\frac{BO}{BD}\Rightarrow AC.BD=AO.BO=R^2\)

25 tháng 2 2020

Giúp mình với ạ <3 

26 tháng 2 2020

d, Vi ED la tiep tuyen (chung minh tren) => tam giac EDF vuong tai D

co \(\widehat{CDE}=\frac{1}{2}sd\widebat{DC}=\frac{1}{2}\widehat{COD}=\frac{1}{2}.120=60^o\)

ma \(\widehat{CED}+\widehat{COD}=180^o\Rightarrow\widehat{CED}=180-120=60^o\)

suy ra \(\Delta CED\) deu => EC=CD (1)

mat khac cung co \(\widehat{CFD}=\widehat{CDF}\) (phu hai goc bang nhau)

=> tam giac CDF can tai C

suy ra CD=CF (2)

tu (1),(2) suy ra dpcm

18 tháng 12 2018

a, Kẻ OM ⊥ CD

Gọi K = OD ∩ d => ∆COK = ∆COD

=> OK = OD => OM = OA = R => CD là tiếp tuyến

b, AC+BD=CM+DM=CD ≥ AB

Do đó min (AC+BD)=AB

<=> CD//AB => ABCD là hình chữ nhật <=> AC = AO

c, AC.BD = MC.MD =   O M 2 =  4 a 2

=>  1 O C 2 + 1 O D 2 = 1 4 a 2

d, Từ tính chất hai giao tuyến => MN//BD => MNAB hay MHAB;

AC//BD; MN//BD; NH//BD

=>  M N B D = N H B D => MN = NH