Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Trả lời :
Bn Nguyễn Hoàng Tân ko đc bìnhluaanj linh tinh.
- Hok tốt !
^_^
a) Ta có : \(y=f\left(x\right)=2x+1\)
Thay \(f\left(-\frac{1}{2}\right)\)vào biểu thức 2x + 1 ta có : \(f\left(-\frac{1}{2}\right)=2\cdot\left(-\frac{1}{2}\right)+1=0\)
b) Với x = 1 thì y = (-2).1 = -2
Ta được \(A\left(1;-2\right)\)thuộc đồ thị hàm số y = -2x
Đường thẳng OA là đồ thị hàm số y = -2x
y x 3 2 1 O 1 2 3 4 -1 -2 -3 -1 -2 -3 y=-2x
c) Thay \(A\left(3;9\right)\)vào đồ thị hàm số y = 3x ta có :
\(y=3\cdot3=9\)(Đẳng thức đúng)
Vậy điểm A thuộc đồ thị hàm số y = 3x
Sai thì thôi nhé!
a) \(f\left(-3\right)=\frac{2}{3}\times-3-\frac{1}{2}=-2-\frac{1}{2}=\frac{-4}{2}-\frac{1}{2}=\frac{-5}{2}\)
\(f\left(\frac{3}{4}\right)=\frac{2}{3}\times\frac{3}{4}-\frac{1}{2}=\frac{1}{2}-\frac{1}{2}=0\)
b) \(f\left(x\right)=\frac{1}{2}\Leftrightarrow\frac{2}{3}\times x-\frac{1}{2}=\frac{1}{2}\Leftrightarrow\frac{2}{3}\times x=1\Leftrightarrow x=1:\frac{2}{3}\Leftrightarrow x=1\times\frac{3}{2}\Leftrightarrow x=\frac{3}{2}\)
c)\(y=f\left(x\right)=\frac{2}{3}\times x-\frac{1}{2}\left(1\right)\)
\(A\left(\frac{3}{4};-\frac{1}{2}\right)\)
\(A\left(\frac{3}{4};\frac{-1}{2}\right)\Rightarrow\hept{\begin{cases}x_A=\frac{3}{4}\\y_A=\frac{-1}{2}\end{cases}}\)
Thay \(x_A=\frac{3}{4}\)vào (1) ta có:
\(y=f\left(x\right)=\frac{2}{3}\times\frac{3}{4}-\frac{1}{2}=\frac{1}{2}-\frac{1}{2}=0\ne y_A\)
Vậy điểm A không thuộc đồ thì hàm số \(y=f\left(x\right)=\frac{2}{3}\times x-\frac{1}{2}\)
\(B\left(0,5;-2\right)\)
\(B\left(0,5;-2\right)\Rightarrow\hept{\begin{cases}x_B=0,5\\y_B=-2\end{cases}}\)
Thay \(x_B=0,5\)vào (1) ta có:
\(y=f\left(x\right)=\frac{2}{3}\times0,5-\frac{1}{2}=\frac{1}{3}-\frac{1}{2}=\frac{2}{6}-\frac{3}{6}=\frac{-1}{6}\ne y_B\)
Vậy điểm B không thuộc đồ thị hàm số \(y=f\left(x\right)=\frac{2}{3}\times x-\frac{1}{2}\)
a: Theo đề, ta có hệ phương trình:
\(\left\{{}\begin{matrix}\dfrac{1}{2}a\cdot\left(-4\right)+b=-3\\\dfrac{1}{2}a\cdot0+b=-3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}-2a+b=-3\\b=-3\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}b=-3\\a=0\end{matrix}\right.\)
Vậy: f(x)=-3
b: f(1)=f(2)=f(-2)=f(-1)=-3
c: Đặt y=4
=>f(x)=4
=>-3=4(vô lý)
a, Ta có: hàm số y = \(\frac{-x}{3}\)(*)
+) Giả sử có điểm A (1; \(-\frac{1}{3}\)) thuộc đồ thị hàm số (*)
=> \(-\frac{1}{3}=\frac{-1}{3}\) ( luôn đúng )
=> A (1; \(-\frac{1}{3}\)) thuộc đồ thị hàm số
+) Giả sử điểm B (\(\frac{-1}{2};\frac{1}{6}\)) thuộc đồ thị hàm số (*)
=> \(\frac{1}{6}=\frac{-\left(-\frac{1}{2}\right)}{3}\)( luôn đúng )
=> B(\(\frac{-1}{2};\frac{1}{6}\)) thuộc đồ thị hàm số (*)
+) Giả sử C ( -1;-3 ) thuộc đồ thị hàm số (*)
=> -3 = \(\frac{-\left(-1\right)}{-3}\)( vô lý )
=> C ( -1;-3 ) không thuộc đồ thị hàm số (*)
+) Giả sử D ( -2; \(\frac{3}{2}\)) thuộc đồ thị hàm số (*)
=> \(\frac{3}{2}=\frac{-\left(-2\right)}{3}\)( Luôn đúng)
=> D ( -2; \(\frac{3}{2}\)) thuộc đồ thị hàm số (*)
b, Ta có: y = \(\frac{-x}{3}\)
+) Cho x= 0 => y = 0. Ta được điểm E ( 0;0 )
+) Cho y = 0 => x = 0. Ta được điểm F ( 0;0 )
=> Đường thằng EF là đồ thị hàm số y = \(\frac{-x}{3}\)
... tự kẻ đồ thị
Dựa vào đồ thị ta thấy đồ thị hàm số y = \(\frac{-x}{3}\)trùng với gốc tọa độ 0