K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 11 2018

Đáp án A

Hoành độ giao điểm của hai đồ thị hàm số đã cho là nghiệm phương trình:

x2 = 3x2 ⇔ -2x2 = 0 ⇔ x = 0

Với x = 0 thì y= 02 = 0

Do đó,đồ thị hai hàm số đã cho cắt nhau tại điểm duy nhất là gốc tọa độ O(0; 0).

19 tháng 3 2020

PT hoành độ giao điểm của (p) và (d) là:

x\(^2\)=x+2

=>x\(^2\)-x -2=0

Ta có: a=1,b=-1, c=-2:a-b+c=0

=>pt có 2no pb x1=-1 x 2=2

Thay x vào tìm y

19 tháng 3 2020

em mới học lớp 3 thôi ,sorry

AH
Akai Haruma
Giáo viên
3 tháng 4 2022

Lời giải:

1. Để đths đi qua $A(-2;-2)$ thì:

$y_A=(m-2)x_A^2$

$\Leftrightarrow -2=(m-2)(-2)^2$

$\Leftrightarrow m-2=\frac{-1}{2}$
$\Leftrightarrow m=\frac{3}{2}$
2.

PT hoành độ giao điểm của đths câu 1 với $y=-1$ là:

$(\frac{3}{2}-2)x^2=-1$

$\Leftrightarrow \frac{-1}{2}x^2=-1$

$\Leftrightarrow x^2=2$

$\Leftrightarrow x=\pm \sqrt{2}$

Vậy 2 tọa độ giao điểm là $M(\sqrt{2}; -1); (-\sqrt{2}; -1)$

Câu 1:  Cho hàm số y = x3 – 2x2 + (1 – m)x + m  (1), m là số thực    1.     Khảo sát sự biến thiên và vẽ đồ thị của hàm số khi m = 1.    2.     Tìm m để đồ thị của hàm số (1) cắt trục hoành tại 3 điểm phân biệt có hoành độ \(x\frac{2}{1}+x\frac{2}{2}+x\frac{3}{2}<4\) thỏa mãn điều kiện Câu 2: Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a. Gọi M và N lần lượt là trung điểm...
Đọc tiếp

Câu 1:  Cho hàm số y = x3 – 2x2 + (1 – m)x + m  (1), m là số thực

    1.     Khảo sát sự biến thiên và vẽ đồ thị của hàm số khi m = 1.

    2.     Tìm m để đồ thị của hàm số (1) cắt trục hoành tại 3 điểm phân biệt có hoành độ \(x\frac{2}{1}+x\frac{2}{2}+x\frac{3}{2}<4\) thỏa mãn điều kiện 

Câu 2: Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a. Gọi M và N lần lượt là trung điểm của các cạnh AB và AD; H là giao điểm của CN và DM. Biết SH vuông góc với mặt phẳng (ABCD) và SH =\(a\sqrt{3}\). Tính thể tích khối chóp S.CDNM và khoảng cách giữa hai đường thẳng DM và SC theo a.

Câu 3:

1.  Trong mặt phẳng tọa độ Oxy, cho tam giác ABC cân tại A có đỉnh A(6; 6), đường thẳng đi qua trung điểm của các cạnh AB và AC có phương trình x + y - 4 = 0. Tìm tọa độ các đỉnh B và C, biết điểm E(1; -3) nằm trên đường cao đi qua đỉnh C của tam giác đã cho.

 

 

 

0
19 tháng 1 2016

ai tickmik mik tick lại cho

Câu 1 (1,0 điểm). Khảo sát sự biến thiên và vẽ đồ thị của hàm số y = x³ - 3x.Câu 2 (1,0 điểm). Tìm giá trị lớn nhất và giá trị nhỏ nhất của hàm số f(x) = x + 4/x trên đoạn [1;3].Câu 3 (1,0 điểm).a) Cho số phức z thỏa mãn (1 - i)z -1 + 5i = 0. Tìm phần thực và phần ảo của z.b) Giải phương trình log2(x² + x + 2) = 3.Câu 4 (1,0 điểm) 1 Tính tích phân I =∫(x - 3)exdx 0 Câu 5 (1,0...
Đọc tiếp

Câu 1 (1,0 điểm). Khảo sát sự biến thiên và vẽ đồ thị của hàm số y = x³ - 3x.

Câu 2 (1,0 điểm). Tìm giá trị lớn nhất và giá trị nhỏ nhất của hàm số f(x) = x + 4/x trên đoạn [1;3].

Câu 3 (1,0 điểm).

a) Cho số phức z thỏa mãn (1 - i)z -1 + 5i = 0. Tìm phần thực và phần ảo của z.

b) Giải phương trình log2(x² + x + 2) = 3.

Câu 4 (1,0 điểm)

 1 
Tính tích phân I =(x - 3)exdx
 0 

Câu 5 (1,0 điểm). Trong không gian với hệ trục Oxyz, cho các điểm A (1; -2; 1), B(2; 1; 3) và mặt phẳng (P) x - y + 2z - 3 = 0. Viết phương trình đường thẳng AB và tìm tọa độ giao điểm của đường thẳng AB với mặt phẳng (P).

Câu 6 (1,0 điểm).

a, Tính giá trị của biểu thức P = (1 - 3cos2α)(2 + 3cos2α), biết sinα = 2/3.

b, Trong đợt phòng chống dịch MERS-CoV, Sở y tế thành phố đã chọn ngẫu nhiên 3 đội phòng chống dịch cơ động trong số 5 đội của Trung tâm y tế dự phòng thành phố và 20 đội của Trung tâm y tế cơ sở để kiểm tra công tác chuẩn bị. Tính xác suất để có ít nhất 2 đội của các Trung tâm y tế cơ sở được chọn. 

Câu 7 (1,0 điểm). Cho hình chóp S.ABCD có đáy ACBD là hình vuông cạnh a, SA vuông góc với mặt phẳmg (ABCD), góc giữa đường thẳng SC và mặt phẳng (ACBD) bằng 45o. Tính theo a thể tích của khối chóp S.ABCD và khoảng cách giữa hai đường thẳng SB, AC.

Câu 8 (1,0 điểm). Trong mặt phẳng với hệ tọa độ Oxy, cho tam giác ABC vuông tại A. Gọi H là hình chiếu vuông góc của A trên cạnh BC; D là điểm đối xứng của B qua H; K là hình chiếu của vuông góc C trên đường thẳng AD. Giả sử H (-5;-5), K (9;-3) và trung điểm của cạnh AC thuộc đường thẳng: x - y + 10 = 0. Tìm tọa độ điểm A.

0
4 tháng 4 2021

Xét pt tọa độ giao điểm:

X²=(m+4)x-2m-5

<=> -x²+(m+4)x-2m-5

a=-1.   b= m+4.  c=2m-5

Để pt có 2 No pb =>∆>0

=> (m+4)²-4×(-1)×2m-5>0

=> m² +2×m×4+16 +8m-20>0

=> m²+9m -2>0

=> x<-9 và x>0

 

 

9 tháng 8 2021

a, bạn tự vẽ nhé 

b, Để hàm số nghịch biến khi m < 0 

c, đths y = mx + 2m - 1 cắt trục tung tại điểm có tung độ bằng 3 

Thay x = 0 ; y = 3 ta được : \(2m-1=3\Leftrightarrow m=2\)

d, đths y = mx + 2m - 1 cắt trục hoành tại điểm có hoành độ bằng -3 

Thay x = -3 ; y = 0 ta được : \(-3m+2m-1=0\Leftrightarrow-m-1=0\Leftrightarrow m=-1\)

9 tháng 8 2021

bổ sung hộ mình nhé 

( dòng đầu tiên ) Để đths trên là hàm bậc nhất khi \(m\ne0\)