K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
19 tháng 3 2021

\(y=\dfrac{2x+2}{x-1}\Rightarrow y'=\dfrac{-4}{\left(x-1\right)^2}\)

a. \(y'\left(2\right)=-4\)

Phương trình tiếp tuyến: \(y=-4\left(x-2\right)+4\Leftrightarrow y=-4x+12\)

b. Pt hoành độ giao điểm:

\(\dfrac{2x+2}{x-1}=2x-1\Leftrightarrow2x^2-5x-1=0\Rightarrow\left[{}\begin{matrix}x=\dfrac{5-\sqrt{33}}{4}\\x=\dfrac{5+\sqrt{33}}{4}\end{matrix}\right.\)

\(y'\left(\dfrac{5-\sqrt{33}}{4}\right)=-\dfrac{17+\sqrt{33}}{8}\) ; \(y'\left(\dfrac{5+\sqrt{33}}{4}\right)=\dfrac{-17+\sqrt{33}}{8}\)

\(y\left(\dfrac{5-\sqrt{33}}{4}\right)=\dfrac{3-\sqrt{33}}{2}\) ; \(y\left(\dfrac{5+\sqrt{33}}{4}\right)=\dfrac{3+\sqrt{33}}{2}\)

Có 2 tiếp tuyến thỏa mãn: 

\(\left[{}\begin{matrix}y=\dfrac{-17-\sqrt{33}}{8}\left(x-\dfrac{5-\sqrt{33}}{4}\right)+\dfrac{3-\sqrt{33}}{2}\\y=\dfrac{-17+\sqrt{33}}{8}\left(x-\dfrac{5+\sqrt{33}}{4}\right)+\dfrac{3+\sqrt{33}}{2}\end{matrix}\right.\)

Đề bài cho số liệu thật kì quặc

NV
14 tháng 4 2022

\(y'=-x^2+4x\)

\(y'\left(-2\right)=-4-8=-12\)

\(y\left(-2\right)=\dfrac{29}{3}\)

Phương trình tiếp tuyến:

\(y=-12\left(x+2\right)+\dfrac{29}{3}\Leftrightarrow y=-12x-\dfrac{43}{3}\)

NM
21 tháng 3 2022

a. \(y'\left(x_0\right)=-2x_0+3\)

b. phương trình tiếp tuyến tại x0 =2 là 

\(y=y'\left(x_0\right)\left(x-x_0\right)+y_0=-\left(x-2\right)+0\text{ hay }y=-x+2\)

c.\(y_0=0\Rightarrow\orbr{\begin{cases}x_0=1\\x_0=2\end{cases}\Rightarrow PTTT\orbr{\begin{cases}y=x-1\\y=-x+2\end{cases}}}\)

d. vì tiếp tuyến vuông góc với đường thẳng có hệ số góc bằng 1 nên tiếp tuyến có hệ số góc = -1 

hay \(-2x_0+3=-1\Leftrightarrow x_0=2\Rightarrow PTTT:y=-x+2\)

NV
2 tháng 4 2021

\(y'=8x^3-8x\)

a. Đường thẳng \(x-48y+1=0\) có hệ số góc \(\dfrac{1}{48}\) nên tiếp tuyến có hệ số góc \(k=-48\)

\(\Rightarrow8x^3-8x=-48\Rightarrow x^3-x+6=0\)

\(\Leftrightarrow\left(x+2\right)\left(x^2-2x+3\right)=0\Rightarrow x=-2\)

\(y'\left(-2\right)=47\)

Phương trình tiếp tuyến: \(y=-48\left(x+2\right)+47\)

b. Gọi tiếp điểm có hoành độ \(x_0\) 

Phương trình tiếp tuyến: \(y=\left(8x_0^3-8x_0\right)\left(x-x_0\right)+2x^4_0-4x^2_0-1\) (1)

Do tiếp tuyến qua A:

\(\Rightarrow-3=\left(8x_0^3-8x_0\right)\left(1-x_0\right)+2x_0^4-4x^2_0-1\)

\(\Leftrightarrow3x_0^4-4x_0^3-2x_0^2+4x_0-1=0\)

\(\Leftrightarrow\left(x_0-1\right)^2\left(3x_0^2+2x_0-1\right)=0\Rightarrow\left[{}\begin{matrix}x_0=1\\x_0=-1\\x_0=\dfrac{1}{3}\end{matrix}\right.\)

Có 3 tiếp tuyến thỏa mãn. Thay lần lượt các giá trị \(x_0\) bên trên vào (1) là được

NV
14 tháng 3 2022

\(y'=6x^2-4x-4\)

\(y'\left(0\right)=-4\)

\(y\left(0\right)=1\)

Do đó pt tiếp tuyến tại điểm có hoành độ x=0 là:

\(y=-4\left(x-0\right)+1\Leftrightarrow y=-4x+1\)

NV
14 tháng 12 2020

\(y'=\dfrac{-1}{\left(x-1\right)^2}\)

Gọi tiếp tuyến qua điểm \(M\left(a;b\right)\) thuộc (C) có dạng:

\(y=\dfrac{-1}{\left(a-1\right)^2}\left(x-a\right)+\dfrac{2a-1}{a-1}\)

\(\Leftrightarrow x+\left(a-1\right)^2y-2a^2+2a-1=0\)

Áp dụng công thức khoảng cách:

\(\dfrac{\left|1+2\left(a-1\right)^2-2a^2+2a-1\right|}{\sqrt{1+\left(a-1\right)^4}}=\sqrt{2}\)

\(\Leftrightarrow\left|2a-2\right|=\sqrt{2}.\sqrt{1+\left(a-1\right)^4}\)

\(\Leftrightarrow2\left(a-1\right)^2=1+\left(a-1\right)^4\)

\(\Leftrightarrow\left[\left(a-1\right)^2-1\right]^2=0\Rightarrow a=...\)

b.

Vẫn từ công thức khoảng cách trên:

\(d=\dfrac{\left|2a-2\right|}{\sqrt{1+\left(a-1\right)^4}}=\dfrac{2\sqrt{\left(a-1\right)^2}}{\sqrt{1+\left(a-1\right)^4}}=\dfrac{2}{\sqrt{\dfrac{1}{\left(a-1\right)^2}+\left(a-1\right)^2}}\)

\(d\le\dfrac{2}{\sqrt{2\sqrt{\dfrac{\left(a-1\right)^2}{\left(a-1\right)^2}}}}=\sqrt{2}\)

Vậy \(d_{max}=\sqrt{2}\) khi tiếp tuyến trùng với các tiếp tuyến câu a

HQ
Hà Quang Minh
Giáo viên
22 tháng 8 2023

a, Hệ số góc của tiếp tuyến của đồ thị là:

\(y'\left(2\right)=-4\cdot2+1=-7\)

b, Phương trình tiếp tuyến của đồ thị (C) tại điểm M(2;-6) là:

\(y=y'\left(2\right)\cdot\left(x-2\right)-6=-7\left(x-2\right)-6=-7x+8\)

23 tháng 4 2020

hello các bạn

8 tháng 7 2018

a) + Hàm số y = cos x có chu kì 2π.

Do đó: cos 2.(x + kπ) = cos (2x + k2π) = cos 2x.

⇒ Hàm số y = cos 2x cũng tuần hoàn với chu kì π.

Giải bài 1 trang 178 sgk Đại số 11 Bài tập | Để học tốt Toán 11

Từ đó suy ra

Giải bài 1 trang 178 sgk Đại số 11 Bài tập | Để học tốt Toán 11

b. y = f(x) = cos 2x

⇒ y’ = f’(x) = (cos 2x)’ = -(2x)’.sin 2x = -2.sin 2x.

Giải bài 1 trang 178 sgk Đại số 11 Bài tập | Để học tốt Toán 11

⇒ Phương trình tiếp tuyến của đồ thị (C) tại điểm có hoành độ x = π/3 là:

Giải bài 1 trang 178 sgk Đại số 11 Bài tập | Để học tốt Toán 11

c. Ta có: 1 – cos 2x = 2.sin2x ≥ 0.

Và 1 + cos22x > 0; ∀ x

Giải bài 1 trang 178 sgk Đại số 11 Bài tập | Để học tốt Toán 11

⇒ Giải bài 1 trang 178 sgk Đại số 11 Bài tập | Để học tốt Toán 11 luôn xác định với mọi x ∈ R.