Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: ta có: ΔMNP cân tại M
mà MH là đường cao
nên H là trung điểm của NP
hay HN=HP
b: NH=NP/2=8/2=4(cm)
=>MH=3(cm)
c: Xét ΔMDH vuông tại D và ΔMEH vuông tại E có
MH chung
\(\widehat{DMH}=\widehat{EMH}\)
Do đó: ΔMDH=ΔMEH
Suy ra: HD=HE
hay ΔHED cân tại H
a) xét tam giác MHN và tam giác MHP có
\(\widehat{MHN}\) = \(\widehat{MHP}\)(= 90 ĐỘ)
MN = MP ( tam giác MNP cân tại M)
MH chung
=> tam giác MHN = tam giác MHP (cạnh huyền cạnh góc vuông)
b) vì tam giác MHN = tam giác MHP (câu a)
=> \(\widehat{M1}\)= \(\widehat{M2}\)(2 góc tương ứng)
=> MH là tia phân giác của \(\widehat{NMP}\)
bạn tự vẽ hình nhé
a.
vì tam giác MNP cân tại M=> MN=MP và \(\widehat{N}\)=\(\widehat{P}\)
Xét tam giác MHN và tam giác MHP
có: MN-MP(CMT)
\(\widehat{N}\)=\(\widehat{P}\)(CMT)
MH là cạnh chung
\(\widehat{MHN}\)=\(\widehat{MHP}\)=\(^{90^0}\)
=> Tam giác MHN= Tam giác MHP(ch-gn)
=> \(\widehat{NMH}\)=\(\widehat{PMH}\)(2 GÓC TƯƠNG ỨNG) (1)
và NH=PH( 2 cạnh tương ứng)
mà H THUỘC NP=> NH=PH=1/2NP (3)
b. Vì H năm giữa N,P
=> MH nằm giữa MN và MP (2)
Từ (1) (2)=> MH là tia phân giác của góc NMP
c. Từ (3)=> NH=PH=1/2.12=6(cm)
Xét tam giác MNH có Góc H=90 độ
=>\(MN^2=NH^2+MH^2\)( ĐL Py-ta-go)
hay \(10^2=6^2+MH^2\)
=>\(MH^2=10^2-6^2\)
\(MH^2=64\)
=>MH=8(cm)
Xét tam giác MKN và tam giác PKH ta có
MK=KP ( K là trung điểm MP )
NK=KH ( K là trung điểm NH )
góc MKN = góc PKH ( doi dinh)
-> tam giac MKN = tam giac PKH (c-g-c)
b)
Xét tam giác MKH và tam giác PKN ta có
MK=KP ( K là trung điểm MP )
HK=KN( K là trung điểm NH )
góc MKH = góc PKN ( doi dinh)
-> tam giac MKH = tam giac PKH (c-g-c)
-> góc HMK = góc HPN
mà 2 goc o vi tri sole trong
nên MH// NP
c) ta có
góc MNK = góc KHP (tam giac MKN = tam giac PKH)
mà 2 goc o vi trí sole trong
nên NM // PH
mà NM vuông góc MP tại M ( tam giác MNP vuông tại M)
-> PH vuông góc MP
b: \(MH=\sqrt{3^2-1.8^2}=2.4\left(cm\right)\)
\(PH=\sqrt{4^2-2.4^2}=3.2\left(cm\right)\)
c: Xét ΔMNP có \(NP^2=MN^2+MP^2\)
nên ΔMNP vuông tại M