Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Từ điểm O, ‘‘phóng to’’ ba lần tam giác ABC, ta sẽ nhận được tam giác A’B’C’.
A B C H A' O C' B'
kẻ đường cao AH có: \(\frac{OA'}{AA'}=\frac{S_{BOC}}{S_{ABC}}\), ta có:
\(\frac{OB'}{BB'}=\frac{S_{AOC}}{S_{ABC}}\)
\(\frac{OC'}{CC'}=\frac{S_{AOB}}{S_{ABC}}\)
\(\Rightarrow\frac{OA'}{AA'}+\frac{OB'}{BB'}+\frac{OC'}{CC'}=\frac{S_{BOC}+S_{AOC}+S_{AOB}}{S_{ABC}}=\frac{S_{ABC}}{S_{ABC}}=1\) (đpcm)
Nguồn: HiệU NguyễN
Lời giải:
A B C O P Q R Đặt \(S_{BOC}=S_1;S_{AOC}=S_2;S_{AOB}=S_3;S_{ABC}=S\)
Ta có \(\dfrac{OA}{OP}=\dfrac{S_{AOB}}{S_{POB}}=\dfrac{S_{AOC}}{S_{POC}}=\dfrac{S_{AOB}+S_{AOC}}{S_{COB}}=\dfrac{S_2+S_3}{S_1}\)
Tương tự:\(\dfrac{OB}{OQ}=\dfrac{S_3+S_1}{S_2};\dfrac{OC}{OR}=\dfrac{S_1+S_2}{S_3}\)
\(\Rightarrow\dfrac{OA}{OP}.\dfrac{OB}{OQ}.\dfrac{OC}{OR}=\dfrac{\left(S_1+S_2\right)\left(S_2+S_3\right)\left(S_3+S_1\right)}{S_1.S_2.S_3}\ge\)
\(\ge\dfrac{2\sqrt{S_1.S_2}.2\sqrt{S_2.S_3}.2\sqrt{S_3.S_1}}{S_1.S_2.S_3}=8\)
Dấu "=" xảy ra \(\Leftrightarrow S_1=S_2=S_3\Leftrightarrow\) O là giao điểm ba đường trung tuyến tam giác ABC
Kẻ OM vuông góc với BC, kẻ AI vuông góc với BC
\(\Rightarrow\)OM//AI
Xét tam giác AA'I có OM//AI(cmt)
\(\Rightarrow\)\(\frac{OM}{AI}=\frac{OA'}{AA'}\)(Theo hệ quả Ta-lét)
\(\Rightarrow\)\(\frac{OA'}{AA'}=\frac{\frac{1}{2}.OM.BC}{\frac{1}{2}.AI.BC}=\frac{S_{BDC}}{S_{ABC}}\)
Tương tự, ta có \(\frac{DB'}{BB'}=\frac{S_{ADC}}{S_{ABC}}\)
\(\frac{DC'}{CC'}=\frac{S_{ADB}}{S_{ABC}}\)
nên \(\Rightarrow\)đ/cm
A B C A' B' C' O H
a) kẻ đường cao AH.Dễ thấy \(\dfrac{OA'}{AA'}=\dfrac{S_{BOC}}{S_{ABC}}\).Tương tự ta có:
\(\dfrac{OB'}{BB'}=\dfrac{S_{AOC}}{S_{ABC}};\dfrac{OC'}{CC'}=\dfrac{S_{AOB}}{S_{ABC}}\)
\(\Rightarrow\dfrac{OA'}{AA'}+\dfrac{OB'}{BB'}+\dfrac{OC'}{CC'}=\dfrac{S_{BOC}+S_{AOC}+S_{AOB}}{S_{ABC}}=\dfrac{S_{ABC}}{S_{ABC}}=1\left(QED\right)\)
b)Theo câu a:
\(\left(1-\dfrac{OA'}{AA'}\right)+\left(1-\dfrac{OB'}{BB'}\right)+\left(1-\dfrac{OC'}{CC'}\right)=3-1\)
\(\Rightarrow\dfrac{OA}{AA'}+\dfrac{OB}{BB'}+\dfrac{OC}{CC'}=2\)
c)Chứng minh \(\dfrac{OA}{OA'}+\dfrac{OB}{OB'}+\dfrac{OC}{OC'}\ge6\)
\(\Leftrightarrow\dfrac{AA'}{OA'}+\dfrac{BB'}{OB'}+\dfrac{CC'}{OC'}\ge9\)
có:\(\dfrac{AA'}{OA'}=\dfrac{S_{ABC}}{S_{BOC}}\)( theo câu a)
tương tự và cộng lại:\(M=\dfrac{AA'}{OA'}+\dfrac{BB'}{OB'}+\dfrac{CC'}{OC'}=S_{ABC}\left(\dfrac{1}{S_{BOC}}+\dfrac{1}{S_{AOC}}+\dfrac{1}{S_{AOB}}\right)\ge\dfrac{9S_{ABC}}{S_{BOC}+S_{AOB}+S_{AOC}}=\dfrac{9S_{ABC}}{S_{ABC}}=9\)
( BĐT AM-GM)
Dấu = xảy ra hay M nhỏ nhất khi O là trọng tâm của tam giác ABC
d) có: \(\dfrac{AA'}{OA'}=\dfrac{S_{ABC}}{S_{BOC}}\Rightarrow\dfrac{AA'-OA'}{OA'}=\dfrac{S_{ABC}-S_{BOC}}{S_{BOC}}\)
\(\Rightarrow\dfrac{OA}{OA'}=\dfrac{S_{AOC}+S_{AOB}}{S_{BOC}}\)
Tương tự và nhân lại:
\(N=\dfrac{OA}{OA'}.\dfrac{OB}{OB'}.\dfrac{OC}{OC'}=\dfrac{\left(S_{AOC}+S_{AOB}\right)\left(S_{BOC}+S_{AOB}\right)\left(S_{BOC}+S_{AOC}\right)}{S_{AOB}.S_{AOC}.S_{BOC}}\)
Đặt \(\left(S_{BOC};S_{AOB};S_{AOC}\right)\rightarrow\left(a,b,c\right)\)
Thì \(N=\dfrac{\left(a+b\right)\left(b+c\right)\left(c+a\right)}{abc}\)
Theo AM-GM:\(N\ge\dfrac{2\sqrt{ab}.2\sqrt{bc}.2\sqrt{ac}}{abc}=\dfrac{8abc}{abc}=8\)
Dấu = xảy ra khi O là trọng tâm của tam giác ABC
Hoang Hung Quan;d cái đó avata đủ hiểu r mà ;d