Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
x O y A B D C m
Bài làm
Vì Ox // Bm
=> \(\widehat{DOA}=\widehat{ABC}\)( hai góc so le trong )
Xét tam giác DOA và tam giác CBA
Ta có: \(\widehat{DOA}=\widehat{ABC}\)( chứng minh trên )
OA = AB ( Vì A là trung điểm của OB )
\(\widehat{DAO}=\widehat{BAC}\)( hai góc đối đỉnh )
=> Tam giác DOA = tam giác mBA ( g.c.g )
=> AD = AC ( hai cạnh tương ứng )
Vậy AD = AC ( đpcm )
# Chúc bạn học tốt #
A B x y O C D
Giải:
a) Vì Bm // Ox nên \(\widehat{ABC}=\widehat{AOD}\) ( so le trong )
Xét \(\Delta ABC,\Delta AOD\) có:
\(\widehat{ABC}=\widehat{AOD}\left(cmt\right)\)
\(OA=AB\left(=\frac{1}{2}OB\right)\)
\(\widehat{DAO}=\widehat{BAC}\) ( đối đỉnh )
\(\Rightarrow\Delta ABC=\Delta AOD\left(g-c-g\right)\)
\(\Rightarrow AD=AC\) ( cạnh t.ứng )
b)Vì Bm // Ox nên \(\widehat{BDA}=\widehat{OCA}\) ( so le trong )
Xét \(\Delta DAB,\Delta CAO\) có:
\(\widehat{BDA}=\widehat{OCA}\left(cmt\right)\)
\(AD=AC\left(cmt\right)\)
\(\widehat{DAB}=\widehat{CAO}\) ( đối đỉnh )
\(\Rightarrow\Delta DAB=\Delta CAO\left(g-c-g\right)\)
\(\Rightarrow OC=BD\) ( cạnh t/ứng )
c) Vì \(\Delta DAB=\Delta CAO\)
\(\Rightarrow\widehat{DBA}=\widehat{AOC}\) ( góc t/ứng )
Mà 2 góc trên ở vị trí so le trong nên OC // BD
Vậy...
Mình nghĩ khó mà có người giải hết chỗ bài tập đấy của bạn, nhiều quá
3/ (Bạn tự vẽ hình giùm)
a/ \(\Delta ABC\)và \(\Delta ADC\)có:
\(\widehat{BAC}=\widehat{ACD}\)(AB // DC; ở vị trí so le trong)
Cạnh AC chung
\(\widehat{CAD}=\widehat{ACB}\)(AB // DC; ở vị trí so le trong)
=> \(\Delta ABC\)= \(\Delta ADC\)(g. c. g)
=> AD = BC (hai cạnh tương ứng)
và AB = DC (hai cạnh tương ứng)
b/ Ta có AD = BC (cm câu a)
và \(AN=\frac{1}{2}AD\)(N là trung điểm AD)
và \(MC=\frac{1}{2}BC\)(M là trung điểm BC)
=> AN = MC
Chứng minh tương tự, ta cũng có: BM = ND
\(\Delta AMB\)và \(\Delta CND\)có:
BM = ND (cmt)
\(\widehat{ABM}=\widehat{NDC}\)(AB // CD; ở vị trí so le trong)
AB = CD (\(\Delta ABC\)= \(\Delta ADC\))
=> \(\Delta AMB\)= \(\Delta CND\)(c. g. c)
=> \(\widehat{BAM}=\widehat{NCD}\)(hai góc tương ứng)
và \(\widehat{BAC}=\widehat{ACN}\)(\(\Delta ABC\)= \(\Delta ADC\))
=> \(\widehat{BAC}-\widehat{BAM}=\widehat{ACN}-\widehat{NCD}\)
=> \(\widehat{MAC}=\widehat{ACN}\)(1)
Chứng minh tương tự, ta cũng có \(\widehat{AMC}=\widehat{ANC}\)(2)
và AN = MC (cmt) (3)
=> \(\Delta MAC=\Delta NAC\)(g, c. g)
=> AM = CN (hai cạnh tương ứng) (đpcm)
c/ \(\Delta AOB\)và \(\Delta COD\)có:
\(\widehat{BAO}=\widehat{OCD}\)(AB // DC; ở vị trí so le trong)
AB = CD (cm câu a)
\(\widehat{ABO}=\widehat{ODC}\)(AD // BC; ở vị trí so le trong)
=> \(\Delta AOB\)= \(\Delta COD\)(g. c. g)
=> OA = OC (hai cạnh tương ứng)
và OB = OD (hai cạnh tương ứng)
d/ \(\Delta ONA\)và \(\Delta MOC\)có:
\(\widehat{AON}=\widehat{MOC}\)(đối đỉnh)
OA = OC (O là trung điểm AC)
\(\widehat{OAN}=\widehat{OCM}\)(AM // NC; ở vị trí so le trong)
=> \(\Delta ONA\)= \(\Delta MOC\)(g. c. g)
=> ON = OM (hai cạnh tương ứng)
=> O là trung điểm MN
=> M, O, N thẳng hàng (đpcm)
A .
Vì OA // MB ( giả thuyết )
=> Góc AOM = Góc OMB ( 1 )
Vì AM = OB ( giả thuyết )
=> Góc AMO = Góc MOB ( 2 )
Từ ( 1 ) và ( 2 )
=> Góc AOM = Góc MOB ; Góc AMO = Góc BMO
Vậy hình tam giác AMO = Hình tam giác BMO ( góc - cạnh - góc )
= > AO = OB ; MA = MB ( 2 cạnh tương ứng )
ta kẻ tia OP
vì OB//AP \(\Rightarrow\)góc AOB=OPB (slt)
góc BOP=ABO (slt)
xét 2 tam giác OAB và OBP
OP chung
AOP=OBP (cmt)
BOP=ABO (cmt)
vậy t.g OAB=OBP (g.c.g)
suy ra OA-=BP, OB=AP (2 cạnh tương ứng)
ta có OA//PB suy ra OAB=APB
xét 2 t.g OAI và IPB
OA=PB (cmt_
OAI=IBP
AOI=IPB
vậy 2 t.g OAI=IPB
vậy AI=IB
IO=IP
suy ra 2 đoạn thẳng cắt nhau tai trung điểm I của mỗi đoạn
ai help mình với ;-;
nịt :)