K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 4 2016

để CA + CB là nhỏ nhất 
<=> CA=CB và CA vuông góc với d; CB vuông góc với d

1 tháng 4 2016

- Tìm điểm A’ đối xứng với A qua d

- Nối A’B cắt d tại M . M chính là điểm cần tìm .

- Thật vậy : Vì A’ đối xứng với A qua d cho nên MA=MA’ (1). Do đó :

MA+MB=MA’+MB=A’B .

- Giả sử tồn tại M’ khác M thuộc d thì : M’A+M’B=M’A’+M’B

'A B≥

. Dấu bằng chỉ

xảy ra khi A’M’B thẳng hàng . Nghĩa là M trùng với M’

1 tháng 4 2016

- Tìm điểm A’ đối xứng với A qua d

- Nối A’B cắt d tại M . M chính là điểm cần tìm .

- Thật vậy : Vì A’ đối xứng với A qua d cho nên MA=MA’ (1). Do đó :

MA+MB=MA’+MB=A’B .

- Giả sử tồn tại M’ khác M thuộc d thì : M’A+M’B=M’A’+M’B

'A B≥

. Dấu bằng chỉ

xảy ra khi A’M’B thẳng hàng . Nghĩa là M trùng với M’

2 tháng 5 2021

M thuộc d nên MA = MB. Vậy  MB + MC = MA + MC. Trong tam giác MAC, ta có : MA + MC > AC. Vậy MB + MC > AC

 Vì CB < CA nên C và B nằm trong cùng một nửa mặt phẳng bờ d. Do đó A và C nằm trong hai nửa  mặt phẳng bờ d khác nhau. Do đó d cắt AC tại H.

Vậy khi M ≡≡ H thì : MB + MC = HB + HC = HA + HC

=> MB + MC = AC

Vậy ta có MB + MC ≥ AC

Khi M trùng với H thì HB + HC = AC.

Tức là MB + MC nhỏ nhất khi M ≡≡ H giao điểm của AC với d

12 tháng 3 2020

A A A B B B C C C H H H d d d K K K 1 2 1

a) Ta có : \(\widehat{B_1}=\widehat{A_2}\)(cùng phụ với góc A1)

Xét \(\Delta\)ABH và \(\Delta\)CAK có :

AB = AC(gt)

\(\widehat{BAH}=\widehat{CAK}\left(=90^0\right)\)

=> \(\Delta ABH=\Delta CAK\left(ch-gn\right)\)

=> AH = CK

b) Ta có AH = CK

Xét \(\Delta AKC\)và \(\Delta BHA\)có :

AC = AB(cmt)

\(\widehat{KCA}=\widehat{HBA}\left(=90^0\right)\)

=> \(\Delta AKC=\Delta BHA\left(ch-gn\right)\)

=> AK = BH(hai cạnh tương ứng)

Do đó : AH + AK = CK + BH 

Vậy HK = CK + BH

12 tháng 3 2020

Hình hơi rộng nên bạn qua thống kê hỏi đáp xem hình rõ hơn nhé

23 tháng 12 2020

a . Xét ΔABC ⊥ tại A , ta có :

\(\widehat{ABC} \) + \(\widehat{ACB}\) = 90o ( 2 góc nhọn phụ nhau )

35o + \(\widehat{ACB}\) = 90o

⇒ \(\widehat{ACB}\) = 55o

23 tháng 12 2020

b . Xét ΔBEA và ΔBED, ta có :

\(\left\{{}\begin{matrix}BA=BD\left(gt\right)\\\widehat{ABE}=\widehat{DBE}\\BE-BE\end{matrix}\right.\)

⇒ ΔBEA = ΔBED ( cạnh chung )

thêm vào chỗ góc ABE = góc DBE là  ( BE là tia pg của góc ABC ) và BE=BE ( cạnh chung ) hộ mình nhá :3

14 tháng 10 2017

hoc lop may truong nao

18 tháng 2 2018

* Phân tích

Giả sử điểm M thuộc xy đã tìm được để có MA+ MB là ngắn nhất.

Lấy A’ đối xứng với A qua xy

ta có: MA = MA’

suy ra MA’ + MB cũng ngắn nhất .

Mà A và B lại nằm trên hai nửa mặt phẳng đối nhau có bờ là đường thẳng xy

Nên M phải nằm giữa A’và B tức là MA’ + MB = A’B

Suy ra M phải là giao của A’B và xy.

* Cách dựng

Dựng A’ đối xứng với A qua xy,

Nối A’với B cắt xy tại điểm M

*Chứng minh :

Nối M với A ta có MA = MA’ (A và A’ đối xứng với nhau qua xy)

Mà MA’ + MB = A’B

suy ra MA+MB =A’B là ngắn nhất

Thật vậy: nếu lấy một điểm M’ thuộc xy mà M’ khác M ,

nối M’ với A’ và M’ với B

ta có tam giác M’A’B.

Do đó M’A’ + M’B > A’B

mà M’A’ = M’A’(tính chất đối xứng).