Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) 6,9cm
b) góc DEF<góc DFE
c) xét tam giác DEF và tam giác DEK có:
KD=DF
GÓC KDE=góc EDF
DE cạnh chung
Do đó tam giác DEF= tam giác DEK
bài này dễ òm
a) Tam giác DEF vuông tại D có:
EF2=DE2+DF2 (định lý pytago)
82=DE2+42
=> DE2=82-42=64-16=48(cm)
=>DE2= căn 48 (xấp xỉ) 6.9
b) Ta có: DE<EF (6.9<8)
=> góc E > góc F (quan hệ góc và cạnh đối diện trong 1 tam giác)
=> góc DEF > góc DFE
c) Xét tam giác DEF và tam giác DEK, có: DK=DF( vì D là trung điểm )
ED là cạnh chung
=> tam giác DEF = tam giác DEK (2 cạnh góc vuông)
bạn tự vẽ hình nhé :)
Ta có : \(\widehat{A}+\widehat{B}+\widehat{C}=180^0\)
=> B+C=180-60=120
=> 1/2B+1/2C=1/2.120=60
=> IBC+ICB=60
Ta lại có:
\(\widehat{IBC}+\widehat{ICB}+\widehat{BIC}=180^0\)
=> BIC=120
Vậy BIC=120
( bạn nhớ thêm các kí hiệu nhé )
Tự vẽ hình nha:
a) Theo định lý tổng 3 góc trong 1 \(\Delta\)ta có
\(\Delta\)ABC có :\(\widehat{CAB}+\widehat{ABC}+\widehat{ACB}\)= 1800
hay 60* + \(\widehat{ABC}+\widehat{ACB}\)=1800
\(\Rightarrow\)\(\widehat{ABC}+\widehat{ACB}\)=1800 - 600 =1200
Vì CE và BD là tia phân giác của \(\widehat{ABC}\)và \(\widehat{ACB}\)
\(\Rightarrow\)\(\widehat{DBC}+\widehat{ECB}\)= \(\frac{120^0}{2}\)=600
Theo định lý tổng 3 góc trong 1 \(\Delta\)ta có
\(\Delta CIB\)có : \(\widehat{ICB}+\widehat{IBC}+\widehat{BIC}\)=1800
hay 600 + \(\widehat{BIC}\)=1800
\(\Rightarrow\)\(\widehat{BIC}\)=1800 - 600 = 1200
1. Cho tứ giác ABCD, gọi M là trung điểm của AD. N là trung điểm của BC.
Chứng minh: a) 2MN bé hơn hoặc = AB+CD
b) trong trường hợp dấu = xảy ra, tứ giác ABCD là hình gì
2. Cho tam giác abc đều, M là điểm nằm trong tam giác, qua m kẻ các đường thẳng // vs ab,//vsbc,//ac cắt ab,ac,bc tại e,d,f
Chứng minh:a, các tứ giác bfmd, cdme, aemf là hình thang cân
b, trong 3 đoạn ma,mb,mc thì đọ dài một đoạn lớn nhất nhỏ hơn tổng độ dài 2 đoạn còn lại