Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
...............................................................................
..........................................................................................
...........................................................................tgbvn JGKGITJNNFJFJNFJBFÒNBFOHRJ;FFJh' IIIor ỉie
D E F H I K C G x y z
a) K là điểm đối xứng với H qua DE => DE là trung trực của KH => DH=DK (1)
I là điểm đối xứng với H qua DF => DF là trung trực của IH => DH=DI (2)
Từ (1) và (2) => DI=DK (đpcm).
b) Gọi giao điểm của IK và DF là G
Gọi Cx là tia đối của CH ; Gy là tia đối của GH; Hz là tia đối của HC
Ta có: CE là trung trực của KH => CH=CK => CE là phân giác của ^KCH
=> CD là phân giác của ^ICx (hay ^GCx)
Tương tự: GD là phân giác của ^CGy
Xét \(\Delta\)HCG: ^CGy và ^GCx là 2 góc ngoài; CD và GD lân lượt là phân giác của ^GCx và ^CGy
Mà CD giao GD tại D => HD là phân giác ^CHG
Lại có: ^CHG và ^GHz là 2 góc kề bù;
HD là phân giác của ^CHG (cmt). Mà HD \(\perp\)HF => HF là phân giác của ^GHz
Xét \(\Delta\)HCG: ^GHz và ^HGI là 2 góc ngoài
HF là phân giác ^GHz, GF là phân giác ^HGI. HF giao GF tại F
=> CF là phân giác ^HCG
Thấy: ^HCG và ^KCH là 2 góc kề bù.
Mà CE và CF lần lượt là phân giác ^KCH và ^HCG => CE\(\perp\)CF hay CF\(\perp\)DE (đpcm).
a) \(EF=\sqrt{3^2+4^2}=5\)(cm)
\(DH=\dfrac{DE\cdot DF}{EF}=\dfrac{3\cdot4}{5}=\dfrac{12}{5}=2,4\left(cm\right)\)
b) \(EF=\sqrt{12^2+9^2}=15\left(cm\right)\)
\(DH=\dfrac{DE\cdot DF}{EF}=\dfrac{9\cdot12}{15}=\dfrac{108}{15}=7.2\left(cm\right)\)
c) \(EF=\sqrt{12^2+5^2}=13\left(cm\right)\)
\(DH=\dfrac{DE\cdot DF}{EF}=\dfrac{5\cdot12}{13}=\dfrac{60}{13}\left(cm\right)\)
a: Xét ΔDEF vuông tại D có DH là đường cao
nên DH^2=EH*FH
=>DH=4,8cm
Xét ΔDEF vuông tại D có DH là đường cao
nên ED^2=EH*EF và FD^2=FH*FE
=>ED^2=36 và FD=64
=>ED=6cm; FD=8cm
b: DK=DF/2=4cm
Xét ΔDKE vuông tại D có tan DEK=DK/DE=4/6=2/3
nên \(\widehat{DEK}\simeq34^0\)
c: ΔDEF vuông tại D có DH là đường cao
nên EH*EF=ED^2
ΔDKE vuông tại D có DM là đường cao
nên EM*EK=ED^2
=>EH*EF=EM*EK
=>EH/EK=EM/EF
Xét ΔEHM và ΔEKF có
EH/EK=EM/EF
góc HEM chung
Do đó: ΔEHM đồng dạng với ΔEKF
=>góc EHM=góc EKF
=>góc FHM+góc FKM=180 độ
=>FKMH nội tiếp
=>góc MKH=góc MFH