K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 9 2023

\(u_n:\left\{{}\begin{matrix}u_1=0;u_1=1\\u_{n+2}=\dfrac{u_{n+1}}{u_{n+1}+u_{n+2}}\end{matrix}\right.\)

Giả sử \(limu_n=a\Rightarrow limu_{n+1}=limu_{n+2}=a\)

\(\Rightarrow a=\dfrac{a}{a+a}=\dfrac{a}{2a}=\dfrac{1}{2}\)

Nên dãy \(u_n\) có giới hạn hữu hạn

vì \(\left\{{}\begin{matrix}u_1=0\\u_2=1>0\end{matrix}\right.\)

\(\Rightarrow u_{n+2}=\dfrac{u_{n+1}}{u_{n+1}+u_{n+2}}>0,\forall n\inℕ\)

\(\Rightarrow a>0\)

\(\Rightarrow limu_n=a=\dfrac{1}{2}\)

NV
12 tháng 2 2020

\(\left\{{}\begin{matrix}u_1=a\\u_{n+1}=\frac{1}{2}u_n\end{matrix}\right.\)

\(\Rightarrow u_n\) là CSN với công bội \(q=\frac{1}{2}\)

\(\Rightarrow u_n=a.\left(\frac{1}{2}\right)^{n-1}\)

\(\Rightarrow lim\left(u_n\right)=lim\left(\frac{a}{2^{n-1}}\right)=0\)

NV
22 tháng 9 2019

\(u_n^2+2011=2u_n.u_{n+1}\Rightarrow u_{n+1}=\frac{u_n^2+2011}{2u_n}\)

Ta có \(u_1>0\), giả sử \(u_k>0\Rightarrow u_{k+1}=\frac{u_k^2+2011}{2u_k}>0\)

\(\Rightarrow\) Dãy đã cho là dãy dương

Mặt khác \(u_{n+1}=\frac{1}{2}\left(u_n+\frac{2011}{u_n}\right)\ge\frac{1}{2}.2\sqrt{2011}=\sqrt{2011}\)

\(\Rightarrow u_n\ge2011\) \(\forall n\ge1\Rightarrow\) dãy đã cho bị chặn dưới

Xét \(\frac{u_{n+1}}{u_n}=\frac{u_n^2+2011}{2u^2_n}=\frac{1}{2}+\frac{2011}{2u_n^2}\le\frac{1}{2}+\frac{2011}{2.2011}=1\) (do \(u_n\ge\sqrt{2011}\))

\(\Rightarrow u_{n+1}\le u_n\) \(\Rightarrow\) dãy đã cho là dãy giảm

Dãy giảm, bị chặn dưới \(\Rightarrow\) dãy có giới hạn

Gọi giới hạn của dãy là \(a\Rightarrow\sqrt{2011}\le a\le u_1\)

\(\Rightarrow a^2-2a^2+2011=0\)

\(\Rightarrow a^2=2011\Rightarrow a=\sqrt{2011}\)

\(\Rightarrow lim\left(u_n\right)=\sqrt{2011}\)

12 tháng 1 2018

\(u_n=1+2\left(n-1\right)=1+2n-2=2n-1\left(\text{*}\right)\)

Chứng minh

Với \(n=1\)

\(VT=1;VP=2\cdot1-1=1=VT\)

Vậy \(\left(\text{*}\right)\) đúng với \(n=1\)

Giả sử \(\left(\text{*}\right)\) đúng với \(n=k\ge1\) tức là

\(u_k=u_{k-1}+2=2k-1\)

Ta chứng minh \(\left(\text{*}\right)\) đúng với \(n=k+1\)

Thật vậy, từ giả thuyết quy nạp ta có

\(u_{k+1}=u_k+2=2k-1+2=2k+2-1=2\left(k+1\right)-1\)

Vậy ...

12 tháng 1 2018

Mới vô tính đú luôn toán lp 11 ak....đỉnh nhỉ...> . <...

20 tháng 5 2021

hãy nhớ

20 tháng 5 2021

Từ công thức truy hồi ta có: 

\(x_{n+1}>x_n,\forall n=1,2...\)

\(\Rightarrow\)dãy số \(\left(x_n\right)\) là dãy số tăng

giả sử dãy số \(\left(x_n\right)\) là dãy bị chặn trên \(\Rightarrow limx_n=x\)

Với x là nghiệm của pt ta có: \(x=x^2+x\Leftrightarrow x=0< x_1\) (vô lý)

=> dãy số \(\left(x_n\right)\) không bị chặn hay \(limx_n=+\infty\)

Mặt khác: \(\frac{1}{x_{n+1}}=\frac{1}{x_n\left(x_n+1\right)}=\frac{1}{x_n}-\frac{1}{x_n+1}\)

\(\Rightarrow\frac{1}{x_n+1}=\frac{1}{x_n}-\frac{1}{x_n+1}\)

\(\Rightarrow S_n=\frac{1}{x_1}-\frac{1}{x_{n+1}}=2-\frac{1}{x_{n+1}}\)

\(\Rightarrow limS_n=2-lim\frac{1}{x_{n+1}}=2\)

NV
23 tháng 4 2019

Xét khai triển:

\(\left(x+1\right)^n=C_n^0+C_n^1x+C_n^2x^n+C_n^3x^3+...+C_n^nx^n\)

Đạo hàm 2 vế:

\(n\left(x+1\right)^{n-1}=C_n^1+2C_n^2x+3C_n^3x^2+...+nC_n^nx^{n-1}\)

Thay \(x=1\) vào ta được:

\(n.2^{n-1}=C_n^1+2C_n^2+3C_n^3+...+nC_n^2=256n\)

\(\Rightarrow2^{n-1}=256=2^8\Rightarrow n=9\)

Câu 2:

\(\left(x-2\right)^{80}=a_0+a_1x+a_2x^2+a_3x^3+...+a_{80}x^{80}\)

Đạo hàm 2 vế:

\(80\left(x-2\right)^{79}=a_1+2a_2x+3a_3x^2+...+80a_{80}x^{79}\)

Thay \(x=1\) ta được:

\(80\left(1-2\right)^{79}=a_1+2a_2+3a_3+...+80a_{80}\)

\(\Rightarrow S=80.\left(-1\right)^{79}=-80\)

23 tháng 4 2019

cảm ơn anh

NV
27 tháng 8 2020

Đề bài sai.

Với \(\left[{}\begin{matrix}u_1>2+\sqrt{2}\\u_1< -\sqrt{2}\end{matrix}\right.\) thì dãy không có giới hạn (tiến tới âm vô cực)

NV
25 tháng 2 2020

\(a=\lim\limits_{x\rightarrow3}\frac{\left(x-3\right)\left(2x+3\right)}{\left(x-3\right)\left(x^3+3x^2+9x\right)}=\lim\limits_{x\rightarrow3}\frac{2x+3}{x^3+3x^2+9x}=\frac{2.3+3}{3^3+2.3^2+9.3}=...\)

\(b=\lim\limits_{x\rightarrow1}\frac{\left(x-1\right)\left(x+1\right)}{\left(x-1\right)\left(x^4+x^2+2x^3+2x+2\right)}=\frac{1+1}{1+1+2+2+2}=...\)

\(c=\lim\limits_{x\rightarrow1}\frac{\left(x-1\right)^2\left(4x^3+3x^2+2x+1\right)}{\left(x-1\right)^2\left(x^2+x+2\right)}=\frac{4+3+2+1}{1+1+2}=...\)

\(d=\lim\limits_{x\rightarrow-1}\frac{\left(x+1\right)\left(x^4-x^3+x^2-x+1\right)}{\left(x+1\right)\left(x^2-x+1\right)}=\frac{1+1+1+1+1}{1+1+1}=...\)

26 tháng 5 2021

\(Lim_{x\rightarrow3}\frac{x^4-27x}{2x^2-3x-9}=Lim_{x\rightarrow3}\frac{x\left(x^3-3^3\right)}{\left(x-3\right)\left(2x+3\right)}\)

\(=Lim_{x\rightarrow3}\frac{x\left(x-3\right)\left(x^2+3x+9\right)}{\left(x-3\right)\left(2x+3\right)}=Lim_{x\rightarrow3}\frac{x\left(x^2+3x+9\right)}{2x+3}\)

\(=\frac{3\left(3^2+3.3+9\right)}{3.2+3}=\frac{3\left(9+9+9\right)}{9}=9\)

Vậy \(Lim_{x\rightarrow3}\frac{x^4-27x}{2x^2-3x-9}=9\)

Bài 1: 1,giai pt: cos2x+sin2x-cosx-(1-sinx)tanx=0 2,cho h/s y=(x+3)/(x+2) có đt(c) và (d):y=-x+m.tim m để (d) cắt (c) tại 2 điểm phân biệt A,B sao cho góc AOB nhọn Bài 2:Cho tam giác ABC,các điểm M,N lần lượt di chuyển trên các đường thẳng AB và AC sao cho MN//BC.gọi P=BN giao CM.đường tròn ngoai tiếp các tam giác BMP và CNP cắt nhau tại 2 điểm phân biệt P và Q.cmr: 1,góc BAQ=góc CAP 2,Điểm Q di chyển trên 1...
Đọc tiếp

Bài 1:

1,giai pt: cos2x+sin2x-cosx-(1-sinx)tanx=0

2,cho h/s y=(x+3)/(x+2) có đt(c) và (d):y=-x+m.tim m để (d) cắt (c) tại 2 điểm phân biệt A,B sao cho góc AOB nhọn

Bài 2:Cho tam giác ABC,các điểm M,N lần lượt di chuyển trên các đường thẳng AB và AC sao cho MN//BC.gọi P=BN giao CM.đường tròn ngoai tiếp các tam giác BMP và CNP cắt nhau tại 2 điểm phân biệt P và Q.cmr:

1,góc BAQ=góc CAP

2,Điểm Q di chyển trên 1 đường thẳng cố định

Bai 3:Tìm tất cả các căp số thực(a:b) có tính chất:Trong (0xy),parabol y=x2-2bx +(a+1) cắt 0x tại 2 điểm phân biệt A,B cắt 0y tại C(C#0) sao cho I(a,b) là tâm đường tròn ngoại tiếp tam giác ABC

Bài 4:

1,cho x,y>0 tm:log3(1-xy)/(x+2y) = 3xy +x +2y -4.tìn gtnn của Q=x+y

2,cho h/s f(x)=ln2019 – ln( (x+1)/x).tính S=f’(1) +f’(2) +f’(3) +…+f’(2019)

Bai 5:cho(xn): x1=2/3

Xn+1=xn/(2(2n+1)xn +1), mọi n>=1

1,đặt Vn=1/xn. cmr Vn+1=Vn+2(2n+1),mọi n>=1.tìm Vn

2,đặt Yn=x1+x2+x3+….+xn.Tính Lim yn

Bài 6: cho tam giác ABC vuông cân tại B.M là trung điểm AB.gọi I là điểm di chuyển trên đường thẳng MC sao cho|2 vecto IM+ vecto IC- vecto IA| đạt gtnn.Tính tỉ số AC/AI

0