Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dụng tính chất của dãy tỉ số bằng nhau,ta có :
\(\frac{b+c}{a}=\frac{c+a}{b}=\frac{a+b}{c}=\frac{\left(b+c\right)+\left(c+a\right)+\left(a+b\right)}{a+b+c}=\frac{2\left(a+b+c\right)}{a+b+c}=2\)
\(\frac{b+c}{a}=2\Rightarrow b+c=2a\)( 1 )
\(\frac{c+a}{b}=2\Rightarrow c+a=2b\)( 2 )
\(\frac{a+b}{c}=2\Rightarrow a+b=2c\)( 3 )
Từ ( 1 ),(2) và ( 3 ) \(\Rightarrow a=b=c\)
Sửa đề cmr a=2018 hoặc b=2018 hoặc c=2018, đây là toán 8
\(a+b+c=2018\Rightarrow\frac{1}{a+b+c}=\frac{1}{2018}\)
=>\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{1}{a+b+c}\Leftrightarrow\frac{1}{a}+\frac{1}{b}=\frac{1}{a+b+c}-\frac{1}{c}\)
<=>\(\frac{a+b}{ab}=\frac{-\left(a+b\right)}{c\left(a+b+c\right)}\Leftrightarrow\left(a+b\right)c\left(a+b+c\right)=-ab\left(a+b\right)\)
<=>\(\left(a+b\right)\left(ca+bc+c^2\right)+ab\left(a+b\right)=0\)
<=>\(\left(a+b\right)\left(ca+bc+c^2+ab\right)=0\)
<=>\(\left(a+b\right)\left[a\left(b+c\right)+c\left(b+c\right)\right]=0\)
<=>\(\left(a+b\right)\left(b+c\right)\left(c+a\right)=0\)
<=>a+b=0 hoặc b+c=0 hoặc c+a=0
Mà a+b+c=2018
=>c=2018 hoặc a=2018 hoặc b=2018 (đpcm)
a) a + b + c + d = 0 \(\Rightarrow a+c=-\left(b+d\right)\)
\(\Rightarrow\)\(\left(a+c\right)^3=-\left(b+d\right)^3\)
\(\Rightarrow\)\(a^3+c^3+3ac\left(a+c\right)=-b^3-d^3-3b\left(b+d\right)\)
\(\Rightarrow\)\(a^3+b^3+c^3+d^3=3ac\left(b+d\right)-3bd\left(b+d\right)\)
\(=3\left(ac-bd\right)\left(b+d\right)\)\(\left(dpcm\right)\)
b) - \(\sqrt{a-b+c}=\sqrt{a}-\sqrt{b}+\sqrt{c}\)
\(\Leftrightarrow\left(\sqrt{a-b+c}+\sqrt{b}\right)^2=\left(\sqrt{a}+\sqrt{c}\right)^2\)
\(\Leftrightarrow b\left(a-b+c\right)=ac\Leftrightarrow\left(b-c\right)\left(a-b\right)=0\Leftrightarrow\orbr{\begin{cases}a=b\\b=c\end{cases}\left(1\right)}\)
- Gia su \(a\le b\le c\), ta có: \(1=\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\le\frac{3}{a}\)
\(\Rightarrow a\le3\Rightarrow a=1,2,3\)
+ Nếu a = 1 thì: \(\frac{1}{b}+\frac{1}{c}=0\left(vl\right)\)
+ Nếu a = 2 thì: \(\frac{1}{b}+\frac{1}{c}=\frac{1}{2}\le\frac{2}{b}\Rightarrow b\le4\)
\(\Rightarrow a=2;b=c=4\)
+ Nếu a = 3 thì: \(\frac{1}{b}+\frac{1}{c}=\frac{2}{3}\le\frac{2}{b}\Rightarrow b\le3\)
\(\Rightarrow a=b=c=3\)
Cac cap (a, b, c) thoa \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=1\)la:
\(\left(2,4,4\right);\left(4,2,4\right);\left(4,4,2\right);\left(3,3,3\right)\)
Kết hợp với \(\left(1\right)\)ta có nghiệm: \(\left(2,4,4\right);\left(4,4,2\right);\left(3,3,3\right)\)
\(\frac{a}{b}=\frac{b}{c}=\frac{c}{d}\Rightarrow\frac{a^3}{b^3}=\frac{b^3}{c^3}=\frac{c^3}{d^3}=\frac{a}{b}.\frac{b}{c}.\frac{c}{d}=\frac{a}{d}=\frac{a^3+b^3+c^3}{b^3+c^3+d^3}\)
=>đpcm
a/b=b/c=c/d
=>a/b.a/b.a/b=b/c.b/c.b/c=c/d.c/d.c/d=a/b.b/c.c/d=a3/b3=b3/c3=c3/d3=a/d=(a3+b3+c3)/(b3+c3+d3)
vậy ..........
Áp dụng tính chất của dãy tỉ số bằng nhau ta có :
\(\frac{a}{b}=\frac{b}{c}=\frac{c}{d}=\frac{d}{a}=\frac{a+b+c+d}{b+c+d+a}=1\)
\(\Rightarrow\hept{\begin{cases}\frac{a}{b}=1\\\frac{b}{c}=1\\\frac{c}{d}=1\end{cases}\Rightarrow\hept{\begin{cases}a=b\\b=c\\c=d\end{cases}\Rightarrow}a=b=c=d\left(đpcm\right)}\)
Câu còn lại ? đề luôn
Mình sửa đề rồi nha!