Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{\overline{ab}}{b}=\frac{\overline{bc}}{c}=\frac{\overline{ca}}{a}=\frac{10a+b}{b}=\frac{10b+c}{c}=\frac{10c+a}{a}\)
áp dụng t/c dãy tỉ số bằng nhau ta có:
\(\frac{\overline{ab}}{b}=\frac{\overline{bc}}{c}=\frac{\overline{ca}}{a}=\frac{10a+b}{b}=\frac{10b+c}{c}=\frac{10c+a}{a}=\frac{11.\left(a+b+c\right)}{a+b+c}=11\)
\(\frac{10a+b}{b}=11\Rightarrow10a+b=11b\Rightarrow10a=10b\Rightarrow a=b\)(1)
\(\frac{10b+c}{c}=11\Rightarrow10b+c=11c\Rightarrow10b=10c\Rightarrow b=c\)(2)
\(\frac{10c+a}{a}=11\Rightarrow10c+a=11a\Rightarrow10c=10a\Rightarrow c=a\)(3)
từ (1), (2), (3) => a=b=c (đpcm)
2) Áp dụng tính chất của dãy tỉ số = nhau ta có:
\(\frac{ab}{b}=\frac{bc}{c}=\frac{ca}{a}=\frac{ab+bc+ca}{b+c+a}=\frac{\left(10a+b\right)+\left(10b+c\right)+\left(10c+a\right)}{a+b+c}=\frac{11.\left(a+b+c\right)}{a+b+c}=11\)
\(\Rightarrow\begin{cases}ab=11b\\bc=11c\\ca=11a\end{cases}\)\(\Rightarrow\begin{cases}10a+b=11b\\10b+c=11c\\10c+a=11a\end{cases}\)\(\Rightarrow\begin{cases}10a=10b\\10b=10c\\10c=10a\end{cases}\)\(\Rightarrow10a=10b=10c\)
=> a = b = c (đpcm)
soyeon_Tiểubàng giải bạn giúp bn ấy ik trong đó có câu 2 mk cần ó
Áp dụng tính chất của dãy tỉ số bằng nhau ta có:
\(\frac{ab}{b}=\frac{bc}{c}=\frac{ca}{c}=\frac{ab+bc+ca}{b+c+a}=\frac{\left(10a+b\right)+\left(10b+c\right)+\left(10c+a\right)}{a+b+c}=\frac{11\left(a+b+c\right)}{a+b+c}=11\)
\(\Rightarrow\begin{cases}ab=11b\\bc=11c\\ca=11a\end{cases}\)\(\Rightarrow\begin{cases}10a+b=11b\\10b+c=11c\\10c+a=11a\end{cases}\)
\(\Rightarrow\begin{cases}10a=10b\\10b=10c\\10c=10a\end{cases}\)\(\Rightarrow10a=10b=10c\)
\(\Rightarrow a=b=c\left(đpcm\right)\)
Ta có:
\(\frac{\overline{ab}+\overline{bc}}{a+b}=\frac{\overline{bc}+\overline{ca}}{b+c}=\frac{\overline{ca}+\overline{ab}}{c+a}\)
Mà: \(\left\{\begin{matrix}\frac{\overline{ab}+\overline{bc}}{a+b}=\frac{10a+b+10b+c}{a+b}=9a+10b+c\\\frac{\overline{bc}+\overline{ca}}{b+c}=\frac{10b+c+10c+a}{b+c}=9b+10c+a\\\frac{\overline{ca}+\overline{ab}}{c+a}=\frac{10c+a+10a+b}{c+a}=9c+10a+b\end{matrix}\right.\)
\(\Rightarrow9a+10b+c=9b+10c+a=9c+10a+b\)
\(\Rightarrow\left\{\begin{matrix}9a=9b=9c\\10b=10c=10a\\c=a=b\end{matrix}\right.\)\(\Rightarrow a=b=c\)
Vậy \(a=b=c\) (Đpcm)
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{\overline{ab}+\overline{bc}}{a+b}=\frac{\overline{bc}+\overline{ca}}{b+c}=\frac{\overline{ca}+\overline{ab}}{c+a}=\frac{\overline{ab}+\overline{bc}+\overline{bc}+\overline{ca}+\overline{ca}+\overline{ab}}{a+b+b+c+c+a}=\frac{2\left(\overline{ab}+\overline{bc}+\overline{ca}\right)}{2\left(a+b+c\right)}=\frac{\overline{ab}+\overline{bc}+\overline{ca}}{a+b+c}\)
\(=\frac{10a+b+10b+c+10c+a}{a+b+c}=\frac{11a+11b+11c}{a+b+c}=\frac{11\left(a+b+c\right)}{a+b+c}=11\)
Lại có : \(P=\left(1+\frac{a}{b}\right)\left(1+\frac{b}{c}\right)\left(1+\frac{c}{a}\right)=\frac{a+b}{b}.\frac{b+c}{c}.\frac{a+c}{a}\)
+) Nếu \(a+b+c=0\) :
\(\Rightarrow\)\(a+b=-c\)
\(\Rightarrow\)\(b+c=-a\)
\(\Rightarrow\)\(a+c=-b\)
Thay \(a+b=-c\)\(;\)\(b+c=-a\) và \(a+c=-b\) vào \(\frac{a+b}{b}.\frac{b+c}{c}.\frac{a+c}{a}\) ta được :
\(\frac{-c}{b}.\frac{-a}{c}.\frac{-b}{a}=\frac{-\left(abc\right)}{abc}=-1\)
+) Nếu \(a+b+c\ne0\) :
Do đó :
\(\frac{\overline{ab}+\overline{bc}}{a+b}=11\)\(\Rightarrow\)\(10a+11b+c=11a+11b\)\(\Rightarrow\)\(c=a\)\(\left(1\right)\)
\(\frac{\overline{bc}+\overline{ca}}{b+c}=11\)\(\Rightarrow\)\(10b+11c+a=11b+11c\)\(\Rightarrow\)\(a=b\)\(\left(2\right)\)
\(\frac{\overline{ca}+\overline{ab}}{c+a}=11\)\(\Rightarrow\)\(10c+11a+b=11c+11a\)\(\Rightarrow\)\(b=c\)\(\left(3\right)\)
Từ (1), (2) và (3) suy ra :
\(a=b=c\)
Suy ra :
\(P=\frac{a+b}{b}.\frac{b+c}{c}.\frac{a+c}{a}=\frac{b+b}{b}.\frac{c+c}{c}.\frac{a+a}{a}=\frac{2b}{b}.\frac{2c}{c}.\frac{2a}{a}=2.2.2=8\)
Vậy \(P=-1\) hoặc \(P=8\)
Chúc bạn học tốt ~
áp dụng tính chất của dãy tỉ số bằng nhau ta có
\(\frac{ab+bc}{a+b}=\frac{bc+ca}{b+c}=\frac{ca+ab}{c+a}=\frac{ab+bc+bc+ca+ca+ab}{a+b+b+c+c+a}=\frac{2\left(ab+bc+ca\right)}{2\left(a+b+c\right)}=\frac{ab+bc+ca}{a+b+c}\)
áp dụng tính chất của dãy tỉ số bằng nhau ta lại có
\(\frac{ab+bc+ca}{a+b+c}=\frac{ab}{a}+\frac{bc}{b}+\frac{ca}{c}=\frac{ab}{a}=\frac{bc}{b}=\frac{ca}{a}\)
Từ \(\frac{ab}{a}=\frac{bc}{b}=\frac{ca}{c}\Rightarrow\frac{b}{1}=\frac{c}{1}=\frac{a}{1}\Rightarrow b=c=a\)
vậy a=b=c (đpcm)
Ta có : \(\frac{a}{2009}=\frac{b}{2011}=\frac{c}{2013}=\frac{a-b}{-2}=\frac{b-c}{-2}=\frac{a-c}{-4}\)
\(=>\frac{\left(a-c\right)^2}{16}=\left(\frac{a-b}{-2}\right).\left(\frac{b-c}{-2}\right)=\frac{\left(a-b\right).\left(b-c\right)}{4}\)
\(=>\frac{\left(a-c\right)^2}{4}=\left(a-b\right).\left(b-c\right)\)
\(\frac{ab}{b}=a.\frac{b}{b}=a.1=a\)
\(\frac{bc}{c}=b.\frac{c}{c}=b.1=b\)
\(\frac{ca}{a}=c.\frac{a}{a}=c.1=c\)
Mà vì: \(\frac{ab}{a}=\frac{bc}{c}=\frac{ca}{a}\)
\(\Rightarrow a=b=c\)
\(\frac{ab}{b}=\frac{bc}{c}=\frac{ca}{a}=ab\div b=bc\div c=ca\div a\)
\(\Rightarrow a=b=c\)