K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

31 tháng 12 2017

Theo tính chất dãy tỉ số bằng nhau ta có :

D=\(\frac{a}{b+c}=\frac{b}{a+c}=\frac{c}{a+b}=\frac{a+b+c}{b+c+a+c+a+b}=\frac{a+b+c}{2a+2b+2c}=\frac{a+b+c}{2\left(a+b+c\right)}=\frac{1}{2}\)

31 tháng 12 2017

\(\dfrac{a}{b+c}=\dfrac{b}{a+c}=\dfrac{c}{a+b}\\ \Rightarrow\dfrac{a}{b+c}+1=\dfrac{b}{a+c}+1=\dfrac{c}{a+b}+1\\ \Rightarrow\dfrac{a+b+c}{b+c}=\dfrac{a+b+c}{a+c}=\dfrac{a+b+c}{a+b}\)

+) Nếu a+b+c=0

\(\Rightarrow\left\{{}\begin{matrix}a+b=-c\\b+c=-a\\a+c=-b\end{matrix}\right.\\ \Rightarrow D=\dfrac{a}{-a}+\dfrac{b}{-b}+\dfrac{c}{-c}=-1+-1+-1=-3\)

+) Nếu a+b+c khác 0

\(\Rightarrow b+c=a+c=a+b\\ \Rightarrow a=b=c\\ \Rightarrow D=\dfrac{a}{2a}+\dfrac{b}{2b}+\dfrac{c}{2c}=\dfrac{a+b+c}{2\left(a+b+c\right)}=\dfrac{1}{2}\)

27 tháng 10 2019

Áp dụng TC của dãy tỉ số bằng nhau , ta có :

\(\frac{2019a+b+c+d}{a}=\frac{a+2019b+c+d}{b}=\frac{a+b+2019c+d}{c}=\frac{a+b+c+2019d}{d}\)

\(=\frac{\left(2019a+a+a+a\right)+\left(2019b+b+b+b\right)+\left(2019c+c+c+c\right)+\left(2019d+d+d+d\right)}{a+b+c+d}\)

\(=\frac{2022\left(a+b+c+d\right)}{a+b+c+d}=2022\)

Xét a + b + c + d =0

=> ( a + b ) = - ( c + d ) ; ( b + c ) = - ( a + d ) ; ( c + d ) = - ( a + b ) ; (a + d ) = - ( b + c )

\(\Rightarrow M=\frac{-\left(c+d\right)}{c+d}+\frac{-\left(a+d\right)}{d+a}+\frac{-\left(a+b\right)}{b+a}+\frac{-\left(a+d\right)}{b+c}\)

     \(M=\left(-1\right)+\left(-1\right)+\left(-1\right)+\left(-1\right)=-4\)

Xét a + b + c + d khác 0 

=> a = b = c = d 

=> M = 1 + 1 + 1 + 1 = 4

Vậy .....................

31 tháng 8 2020

Bài làm:

Ta có: \(\frac{a}{b}=\frac{c}{d}\Leftrightarrow\frac{a^2}{b^2}=\frac{c^2}{d^2}\Leftrightarrow\frac{a^2}{c^2}=\frac{b^2}{d^2}\)

Áp dụng t/c dãy tỉ số bằng nhau:

Ta có: \(\frac{a^2}{c^2}=\frac{b^2}{d^2}=\frac{a^2+b^2}{c^2+d^2}=\frac{a^2-b^2}{c^2-d^2}\)

=> \(\frac{a^2+b^2}{a^2-b^2}=\frac{c^2+d^2}{c^2-d^2}\)

31 tháng 8 2020

Đặt \(\frac{a}{b}=\frac{c}{d}=k\Rightarrow\hept{\begin{cases}a=kb\\c=kd\end{cases}}\)

=>\(\frac{a^2+b^2}{a^2-b^2}=\frac{\left(kb\right)^2+b^2}{\left(kb\right)^2-b^2}=\frac{k^2b^2+b^2}{k^2b^2-b^2}=\frac{b^2\left(k^2+1\right)}{b^2\left(k^2-1\right)}=\frac{k^2+1}{k^2-1}\)(1)

=> \(\frac{c^2+d^2}{c^2-d^2}=\frac{\left(kd\right)^2+d^2}{\left(kd\right)^2-d^2}=\frac{k^2d^2+d^2}{k^2d^2-d^2}=\frac{d^2\left(k^2+1\right)}{d^2\left(k^2-1\right)}=\frac{k^2+1}{k^2-1}\)(2)

Từ (1) và (2) => đpcm

15 tháng 8 2023

a) \(\dfrac{a}{b}=\dfrac{c}{d}=\dfrac{a+c}{b+d}\)

\(\Rightarrow\left(b+d\right)c=\left(a+c\right)d\)

\(\Rightarrow dpcm\)

b) \(\dfrac{a}{b}=\dfrac{c}{d}=\dfrac{2a}{2b}=\dfrac{c}{d}=\dfrac{2a+c}{2b+d}=\dfrac{2a-c}{2b-d}\)

\(\Rightarrow\left(2b-d\right)\left(2a+c\right)=\left(2a-c\right)\left(2b+d\right)\)

\(\Rightarrow dpcm\)

c) \(\dfrac{a}{b}=\dfrac{c}{d}=\dfrac{3c}{3d}=\dfrac{3a}{3b}=\dfrac{5c}{5d}=\dfrac{3a+5c}{3b+5d}=\dfrac{a-3c}{b-3d}\)

\(\Rightarrow\left(b-3d\right)\left(b-3d\right)=\left(3b+5d\right)\left(a-3c\right)\)

\(\Rightarrow dpcm\)

15 tháng 8 2023

Đính chính câu c

\(\Rightarrow\left(3a+5c\right)\left(b-3d\right)=\left(3b+5d\right)\left(a-3c\right)\)

30 tháng 6 2017

sai thì thôi nhá , tôi làm ko chắc lắm.

Trừ đi 1 ở mỗi tỉ số, ta được :

\(\frac{2a+b+c+d}{a}-1=\frac{a+2b+c+d}{b}-1=\frac{a+b+2c+d}{c}-1=\frac{a+b+c+2d}{d}-1\)

\(\frac{a+b+c+d}{a}=\frac{a+b+c+d}{b}=\frac{a+b+c+d}{c}=\frac{a+b+c+d}{d}\)

Nếu a + b + c + d \(\ne\)0 thì a = b = c = d

Khi đó M = 1 + 1 + 1 + 1 = 4

Nếu a + b + c + d = 0 thì a + b = - ( c + d ) ; b + c = - ( d + a ) ; c + d = - ( a + b ) ; d + a = - ( b + c )

Khi đó M = ( -1 ) + ( -1 ) + ( -1 ) + ( -1 ) = -4

20 tháng 10 2016

Giải:

Đặt \(\frac{a}{b}=\frac{c}{d}=k\)

\(\Rightarrow a=bk,c=dk\)

Ta có:

\(\left(\frac{a+b}{c+d}\right)^2=\left(\frac{bk+b}{dk+d}\right)^2=\left[\frac{b.\left(k+1\right)}{d.\left(k+1\right)}\right]^2=\left(\frac{b}{d}\right)^2\) (1)

\(\frac{a^2+b^2}{c^2+d^2}=\frac{\left(bk\right)^2+b^2}{\left(dk\right)^2+d^2}=\frac{b^2.k^2+b^2}{d^2.k^2+d^2}=\frac{b^2.\left(k^2+1\right)}{d^2.\left(k^2+1\right)}=\frac{b^2}{d^2}=\left(\frac{b}{d}\right)^2\) (2)

Từ (1) và (2) suy ra \(\left(\frac{a+b}{c+d}\right)^2=\frac{a^2+b^2}{c^2+d^2}\)

Vậy \(\left(\frac{a+b}{c+d}\right)^2=\frac{a^2+b^2}{c^2+d^2}\)

20 tháng 10 2016

theo đề bài ta có
\(ab\left(c^2+d^2\right)=ab.c^2+ab.d^2=\left(a.c\right).\left(b.c\right)+\left(a.d\right).\left(b.d\right)\\ cd\left(a^2+b^2\right)=cd.a^2+cd.b^2=\left(c.a\right).\left(d.a\right)+\left(c.b\right).\left(d.b\right)\)
\(\left(a.c\right)\left(b.c\right)+\left(a.d\right)\left(b.d\right)=\left(c.a\right)\left(d.a\right)+\left(c.b\right)\left(d.b\right)\) vì mỗi vế đều bằng nhau
- Cnứng minh \(\frac{\left(a^2+b^2\right)}{c^2+d^2}=\frac{\left(a+b\right)^2}{\left(c+d\right)^2}\)
ta có vì \(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}\Rightarrow\frac{\left(a+b\right)}{\left(c+d\right)}=\frac{a}{c}=\frac{b}{d}\Rightarrow\frac{\left(a+b\right)^2}{\left(c+d\right)^2}=\frac{a^2}{c^2}=\frac{b^2}{d^2}\Rightarrow\frac{\left(a+b\right)^2}{\left(c+d\right)^2}=\frac{\left(a^2+b^2\right)}{\left(c^2+d^2\right)}\)

2 tháng 9 2020

Đề bài gì lạ vậy, sao tìm a+b/b+c mà lại có c/d=6, có nhầm đề ko bạn? Nhưng thôi mình cứ làm thử:)

Theo đề bài, ta có:

\(\frac{b}{a}=4,\frac{c}{d}=6\Rightarrow b=4a,c=6d\)

\(\Rightarrow\frac{a+b}{b+c}=\frac{a+4a}{4a+6d}=\frac{5a}{4a+6d}\)

\(=\frac{5a\cdot\frac{1}{d}}{\left(4a+6d\right)\cdot\frac{1}{d}}=\frac{5a\cdot\frac{1}{d}}{4a\cdot\frac{1}{d}+\frac{6d}{d}}=\frac{5a\cdot\frac{1}{d}}{4a\cdot\frac{1}{d}+6}\)

\(=\frac{2\cdot\frac{2.5a}{d}}{2\cdot\frac{2a}{d}+2\cdot3}=\frac{2\cdot\frac{2.5a}{d}}{2\cdot\left(\frac{2a}{d}+3\right)}=\frac{\frac{2.5a}{d}}{\frac{2a}{d}+3}=\frac{\frac{2a}{d}+\frac{0.5a}{d}}{\frac{2a}{d}+3}\)

Xét tử số của phân số trên ta thấy:

\(\frac{2a}{d}=4\cdot\frac{0.5a}{d}\) và số hạng\(\frac{2a}{d}\) xuất hiện 2 lần (1 lần ở tử số và 1 lần ở mẫu số) giống như số hạng \(b\) ở phân số \(\frac{a+b}{b+c}\) ban đầu.

\(\Rightarrow b=\frac{2a}{d},a=\frac{0.5a}{d}\)

\(\Rightarrow d=0.5a\Rightarrow c=0.5a\cdot6=3a\)

\(\Rightarrow\frac{a+b}{b+c}=\frac{a+4a}{4a+6a}=\frac{5a}{10a}=\frac{1}{2}\)