K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 10 2018

  ( Đề bài có bị thiếu không vậy? Theo mình thì đề bài bị thiếu 1 chỗ rồi ) 

                                                                        Bài làm

Ta có:

\(\frac{a1}{a2}=\frac{a2}{a3}=\frac{a3}{a4}=...=\frac{a2017}{a2018}=\frac{a1+a2+a3+...+a2017}{a2+a3+a4+...+2018}\)

Đặt \(\frac{a1+a2+a3+...+a2017}{a2+a3+a4+...+a2018}=x\)

\(\Rightarrow\frac{a1}{a2}=x\left(1\right);\frac{a2}{a3}=x\left(2\right);\frac{a3}{a4}=x\left(3\right);...;\frac{a2017}{a2018}=x\left(2017\right)\)

Nhân (1), (2), (3),..., (2017) vế theo vế ta có:

\(\frac{a1}{a2}.\frac{a2}{a3}.\frac{a3}{a4}...\frac{a2017}{a2018}=x^{2017}\)

Hay \(\frac{a1}{a2018}=\left(\frac{a1}{a2}+\frac{a2}{a3}+\frac{a3}{a4}+...+\frac{a2017}{a2018}\right)^{2017}\)\(\left(đpcm\right)\)

( sai thì thôi nha )

      

4 tháng 11 2018

fmkvkmbkdfjm

6 tháng 2 2017

ĐÂY :

Ta có:a1/a2=a2/a3=....=a2017/a2018

suy ra a1/a2xa2/a3x...xa2017/a2018=(a1/a2)^2017(2017 số bằng nhau nhân với nhau)                                                (1)

mặt khác a1/a2xa2/a3x.....xa2017/a2018==(a1xa2x...a2017)/(a2xa3x...xa2018)=a1/a2018(giản ước)=-5^2017              (2)

Từ(1)và(2) suy ra (a1/a2)^2017=-5^2017 suy ra a1/a2=-5

Theo tính chất dãy tỉ số bằng nhau:

-5=a1/a2=a2/a3=...=a2017/a2018=a1+a2+a3+...+a2017/a2+a3+a4+..+a2018

suy ra a1+a2+a3+...+a2017/a2+a3+a4+..+a2018=-5 

Vậy :a1+a2+a3+...+a2017/a2+a3+a4+..+a2018=-5 

Hôm nào có bài nào khó thì gửi mình giải cho

6 tháng 2 2017

-5 nha bn trong violympic vòng 12 lớp 7 phải ko chắc chắn đúng lun 100000000000000000000000000000000000000000000000000% vì bài này mik làm rùi.

cho mik nha

1 tháng 2 2017

Đáp án :-5

14 tháng 1 2017

violympic lớp 7 phải không , bạn ghi sai đề rồi !

Câu trả lời này mình giải theo đề đúng !!

Đặt \(\frac{a_1}{a_2}=\frac{a_2}{a_3}=\frac{a_3}{a_4}=...=\frac{a_{2017}}{a_{2018}}=k\)

Ta có :

a1 = a2.k

a1 = (a3.k).k = a3.k2

a1 = ( a4.k.k).k = a4.k3

.......

a1 = a2018.k2017

=> \(\frac{a_1}{a_{2018}}=k^{2017}\)

\(\frac{a_1}{a_{2018}}=\left(-5\right)^{2017}\)

=> k2017 = (- 5 )2017 => k = - 5

=> \(\frac{a_1}{a_2}=\frac{a_2}{a_3}=...=\frac{a_{2017}}{a_{2018}}=\frac{a_1+a_2+...+a_{2017}}{a_2+a_3+...+a_{2018}}=-5\)

29 tháng 10 2016

Giải:

Áp dụng tính chất của dãy tỉ số bằng nhau ta có:

\(\frac{a_1}{a_2}=\frac{a_2}{a_3}=\frac{a_3}{a_4}=...=\frac{a_{2016}}{a_{2017}}=\frac{a_1+a_2+a_3+...+a_{2016}}{a_2+a_3+a_4+...+a_{2017}}\)

\(\Rightarrow\frac{a_1}{a_2}.\frac{a_2}{a_3}.\frac{a_3}{a_4}...\frac{a_{2016}}{a_{2017}}=\left(\frac{a_1+a_2+a_3+...+a_{2016}}{a_2+a_3+a_4+...+a_{2017}}\right)^{2016}\)

\(\Rightarrow\frac{a_1}{a_{2017}}=\left(\frac{a_1+a_2+a_3+...+a_{2016}}{a_2+a_3+a_4+...+a_{2017}}\right)^{2016}\left(đpcm\right)\)

30 tháng 9 2017

Câu 1:

a, \(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}\Rightarrow\frac{a^n}{c^n}=\frac{b^n}{d^n}=\frac{a^n+b^n}{c^n+d^n}=\frac{a^n-b^n}{c^n-d^n}\)

b,Ta có: \(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}\Rightarrow\frac{a}{c}\cdot\frac{a}{c}=\frac{b}{d}\cdot\frac{a}{c}\Rightarrow\frac{a^2}{b^2}=\frac{ab}{cd}\)

\(\frac{a}{c}=\frac{b}{d}\Rightarrow\frac{a}{c}\cdot\frac{b}{d}=\frac{b}{d}\cdot\frac{b}{d}\Rightarrow\frac{ac}{cd}=\frac{b^2}{d^2}\)

\(\Rightarrow\frac{ac}{bd}=\frac{a^2}{c^2}=\frac{b^2}{d^2}=\frac{a^2+b^2}{c^2+d^2}\left(1\right)\)

Ta lại có: \(\frac{a}{c}=\frac{b}{d}=\frac{a+b}{c+d}\Rightarrow\frac{a}{c}\cdot\frac{b}{d}=\frac{a+b}{c+d}\cdot\frac{a+b}{c+d}\Rightarrow\frac{ab}{cd}=\left(\frac{a+b}{c+d}\right)^2\left(2\right)\)

Từ (1) và (2) => \(\left(\frac{a+b}{c+d}\right)^2=\frac{a^2+b^2}{c^2+d^2}\)

Câu 2:

\(\frac{a1}{a2}=\frac{a2}{a3}=....=\frac{a2017}{a2018}=\frac{a1+a2+...+a2017}{a2+a3+....+a2018}\)

\(\Rightarrow\frac{a1}{a2}=\frac{a1+a2+...+a2017}{a2+a3+...+a2018}\left(1\right)\)

\(\frac{a2}{a3}=\frac{a1+a2+...+a2017}{a2+a3+...+a2018}\left(2\right)\)

..............

\(\frac{a2017}{a2018}=\frac{a1+a2+...+a2017}{a2+a3+...+a2018}\left(2017\right)\)

Nhân các vế (1),(2)....(2017) ta được:

\(\frac{a1}{a2}\cdot\frac{a2}{a3}\cdot\cdot\cdot\cdot\cdot\frac{a2017}{a2018}=\frac{a1}{a2018}=\left(\frac{a1+a2+...+a2017}{a2+a3+...+a2018}\right)^{2017}\)

Vậy...

Câu 3:

\(x_2^2=x_1x_3\Rightarrow\frac{x1}{x2}=\frac{x2}{x3}\)

\(x_3^2=x_2x_4\Rightarrow\frac{x2}{x3}=\frac{x3}{x4}\)

\(x_4^2=x_3x_5\Rightarrow\frac{x3}{x4}=\frac{x4}{x5}\)

\(x_5^2=x_4x_6\Rightarrow\frac{x4}{x5}=\frac{x5}{x6}\)

Đến đây thfi làm giống câu 2

18 tháng 6 2018

cho x1, x2 , x3 là 3 số thực khác 0 thỏa mãn x1 + x2 + x3 = a ; x1x2 + x2x3 + x1x3 = 0 ; x1x2x3 = b

CMR: a/b < 0

31 tháng 12 2015

a5=5

tin mình đi, mình làm rồi. 300đ đó.

31 tháng 12 2015

Theo t/c dãy tỉ số = nhau:

\(\frac{a1}{a2}=\frac{a2}{a3}=\frac{a3}{a4}=...=\frac{a9}{a1}=\frac{a1+a2+a3+...+a9}{a2+a3+a4+...+a1}=1\)

=> a1=a2; a2=a3; a3=a4; ...; a9=a1

=> a1=a2=a3=a4=...=a9

=> a1=a5=5

Vậy a5=5.