K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
2 tháng 3 2021

Đặt \(v_n=u_n^2\Rightarrow\left\{{}\begin{matrix}v_1=2851\\v_{n+1}=v_n+n\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}v_1=2851\\v_{n+1}-\dfrac{1}{2}\left(n+1\right)^2+\dfrac{1}{2}\left(n+1\right)=v_n-\dfrac{1}{2}n^2+\dfrac{1}{2}n\end{matrix}\right.\)

Đặt \(v_n-\dfrac{1}{2}n^2+\dfrac{1}{2}n=x_n\Rightarrow\left\{{}\begin{matrix}x_1=2851\\x_{n+1}=x_n=...=x_1=2851\end{matrix}\right.\)

\(\Rightarrow v_n=\dfrac{1}{2}n^2-\dfrac{1}{2}n+2851\)

\(\Rightarrow u_n=\sqrt{\dfrac{1}{2}n^2-\dfrac{1}{2}n+2851}\Rightarrow u_{2020}=1429\)

NV
28 tháng 3 2021

Dễ dàng nhận thấy \(u_n\) là dãy dương

Ta sẽ chứng minh \(u_n< 2\) ; \(\forall n\)

Với \(n=1\Rightarrow u_1=\sqrt{2}< 2\) (thỏa mãn)

Giả sử điều đó đúng với \(n=k\) hay \(u_k< 2\)

Ta cần chứng minh \(u_{k+1}< 2\)

Thật vậy, \(u_{k+1}=\sqrt{u_k+2}< \sqrt{2+2}=2\) (đpcm)

Do đó dãy bị chặn trên bởi 2

Lại có: \(u_{n+1}-u_u=\sqrt{u_n+2}-u_n=\dfrac{u_n+2-u_n^2}{\sqrt{u_n+2}+u_n}=\dfrac{\left(u_n+1\right)\left(2-u_n\right)}{\sqrt{u_n+2}+u_n}>0\) (do \(u_n< 2\))

\(\Rightarrow u_{n+1}>u_n\Rightarrow\) dãy tăng

Dãy tăng và bị chặn trên nên có giới hạn hữu hạn. Gọi giới hạn đó là k>0

Lấy giới hạn 2 vế giả thiết:

\(\lim\left(u_{n+1}\right)=\lim\left(\sqrt{u_n+2}\right)\Leftrightarrow k=\sqrt{k+2}\)

\(\Leftrightarrow k^2-k-2=0\Rightarrow k=2\)

Vậy \(\lim\left(u_n\right)=2\)

19 tháng 5 2017

Dãy số - cấp số cộng và cấp số nhân

Dãy số - cấp số cộng và cấp số nhân

1 tháng 12 2023

NV
7 tháng 11 2021

Dãy đã cho hiển nhiên là dãy dương

Ta sẽ chứng minh dãy đã cho bị chặn trên bởi 2 hay \(u_n\le2\) với mọi n

- Với \(n=1\Rightarrow u_1=\sqrt{2}< 2\) (đúng)

- Giả sử điều đó đúng với \(n=k\ge1\) hay \(u_k\le2\)

- Ta cần chứng minh với  \(n=k+1\) cũng đúng

Hay \(u_{k+1}\le2\)

Ta có: \(u_{k+1}=\sqrt{2+u_k}\le\sqrt{2+2}=2\) (đpcm)

Vậy \(u_n\le2\)

Đặt \(v_n=\dfrac{1}{2}u_n\Rightarrow0< v_n\le1\) và \(\left\{{}\begin{matrix}v_1=\dfrac{\sqrt{2}}{2}=cos\left(\dfrac{\pi}{4}\right)\\2v_{n+1}=\sqrt{2+2v_n}\end{matrix}\right.\) 

\(\Rightarrow4v_{n+1}^2=2+2v_n\Rightarrow v_n=2v_{n+1}^2-1\)

Do \(0< v_n\le1\) , đặt \(v_n=cos\left(x_n\right)\) với \(x_n\in\left(0;\pi\right)\)

\(\Rightarrow\left\{{}\begin{matrix}x_1=\dfrac{\pi}{4}\\cos\left(x_n\right)=2cos^2\left(x_{n+1}\right)-1=cos\left(2x_{n+1}\right)\end{matrix}\right.\)

\(\Rightarrow x_n=2x_{n+1}\Rightarrow x_{n+1}=\dfrac{1}{2}x_n\)

\(\Rightarrow x_n\) là CSN với công bội \(\dfrac{1}{2}\)

\(\Rightarrow x_n=\dfrac{\pi}{4}.\left(\dfrac{1}{2}\right)^{n-1}=\dfrac{\pi}{2^{n+1}}\)

\(\Rightarrow v_n=cos\left(x_n\right)=cos\left(\dfrac{\pi}{2^{n+1}}\right)\)

\(\Rightarrow u_n=2v_n=2cos\left(\dfrac{\pi}{2^{n+1}}\right)\)

Dãy \(\dfrac{\pi}{2^{n+1}}\) giảm và thuộc \(\left(0;\dfrac{\pi}{2}\right)\) nên \(cos\left(\dfrac{\pi}{2^{n+1}}\right)\) tăng

Do đó dãy số đã cho là dãy tăng.

P/s: đây là cách làm hoàn chỉnh có thứ tự (nhược điểm là rất dài). Có 1 cách khác đơn giản hơn là bằng 1 phép màu nào đó ngay từ đầu bạn đưa ra ngay dự đoán công thức tổng quát của dãy số là \(2cos\left(\dfrac{\pi}{2^{n+1}}\right)\) rồi chứng minh nó bằng quy nạp cũng được. Như vậy sẽ rất ngắn, cả bài chỉ 4-5 dòng nhưng lời giải hơi đột ngột

Ta có: \(u_n>2020\) với mọi \(n\in N\text{*}\) \(\left(\text{*}\right)\)

Thật vậy, dễ thấy \(u_1=2021>2020\)

Giả sử \(\left(\text{*}\right)\) đúng với \(n=k\left(k\ge1\right)\)

\(\Rightarrow u_k>2020\)\(\Rightarrow u_{k+1}=\left[1-\dfrac{1}{\left(k+1\right)^2}\right]u_k+\dfrac{2020}{\left(k+1\right)^2}\)

\(>\left[1-\dfrac{1}{\left(k+1\right)^2}\right].2020+\dfrac{2020}{\left(k+1\right)^2}=2020\)

\(\Rightarrow\left(\text{*}\right)\) đúng với \(n=k+1\)

Do đó theo nguyên lý quy nạp ta có đpcm.

Lại có:

\(u_{n+1}-u_n=\dfrac{2020}{\left(n+1\right)^2}-\dfrac{u_n}{\left(n+1\right)^2}< 0\) với mọi \(n\in N\text{*}\)

\(\Rightarrow\left(u_n\right)\) là dãy giảm

\(\left(u_n\right)\) là dãy giảm và bị chặn nên \(\left(u_n\right)\) là dãy hội tụ

Đặt \(limu_n=L\)

\(\Rightarrow\left\{{}\begin{matrix}2020\le L\le2021\\L=\left[1-\dfrac{1}{\left(n+1\right)^2}\right].L+\dfrac{2020}{\left(n+1\right)^2}\end{matrix}\right.\)\(\Rightarrow L=2020\left(tm\right)\)

Vậy \(limu_n=2020\)

 

Ta có: \(u_n>2020\) với mọi \(n\in N\text{*}\) \(\left(\text{*}\right)\)

Thật vậy, dễ thấy \(u_1=2021>2020\)

Giả sử \(\left(\text{*}\right)\) đúng với \(n=k\left(k\ge1\right)\)

\(\Rightarrow u_k>2020\)\(\Rightarrow u_{k+1}=\left[1-\dfrac{1}{\left(k+1\right)^2}\right]u_k+\dfrac{2020}{\left(k+1\right)^2}\)

\(>\left[1-\dfrac{1}{\left(k+1\right)^2}\right].2020+\dfrac{2020}{\left(k+1\right)^2}=2020\)

\(\Rightarrow\left(\text{*}\right)\) đúng với \(n=k+1\)

Do đó theo nguyên lý quy nạp ta có đpcm.

Lại có:

\(u_{n+1}-u_n=\dfrac{2020}{\left(n+1\right)^2}-\dfrac{u_n}{\left(n+1\right)^2}< 0\) với mọi \(n\in N\text{*}\)

\(\Rightarrow\left(u_n\right)\) là dãy giảm

\(\left(u_n\right)\) là dãy giảm và bị chặn nên \(\left(u_n\right)\) là dãy hội tụ

Đặt \(limu_n=L\)

\(\Rightarrow\left\{{}\begin{matrix}2020\le L\le2021\\L=\left[1-\dfrac{1}{\left(n+1\right)^2}\right].L+\dfrac{2020}{\left(n+1\right)^2}\end{matrix}\right.\)\(\Rightarrow L=2020\left(tm\right)\)

Vậy \(limu_n=2020\)

 

24 tháng 5 2017

a)
\(u_1=5\)
\(u_2-u_1=1\)
\(u_3-u_2=4\)
............
\(u_n-u_{n-1}=3\left(n-1\right)-2=3n-5\)
Cộng từng vế của đẳng thức và rút gọn ta được:
\(u_n=5+1+4+7+...+3n-5\)
\(=5+\dfrac{\left(3n-5+1\right)\left(n-1\right)}{2}=5+\dfrac{\left(3n-4\right)\left(n-1\right)}{2}\).
Vậy \(u_n=5+\dfrac{\left(3n-4\right)\left(n-1\right)}{2}\) với \(n\ge1\).
Xét hiệu:
\(u_1=5\)
\(u_n-u_{n-1}=3n-5\) \(\left(n\ge2\right)\)
Với \(n\ge2\) thì \(3n-5>0\) nên \(u_n>u_{n-1}\).
Vậy \(\left(u_n\right)\) là dãy số tăng.