Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Cho \(a\in R;n\in Z^+\) thì \(a^n=a\cdot a\cdot...\cdot a\)(n chữ số a)
b: \(a^0=1\)
\(u_n=\dfrac{n^2+1}{2n^2-3}\)
\(=\dfrac{1}{2}\cdot\dfrac{n^2+1}{n^2-1,5}\)
\(=\dfrac{1}{2}\left(\dfrac{n^2-1,5+2,5}{n^2-1,5}\right)=\dfrac{1}{2}\left(1+\dfrac{2.5}{n^2-1,5}\right)< \dfrac{1}{2}\)
=>(Un) là dãy số bị chặn
Ta có:
\(\begin{array}{l}\frac{{{u_{n + 1}}}}{{{u_n}}} > 1\,\,\,\forall n \in {\mathbb{N}^*}\\ \Leftrightarrow {u_{n + 1}} > {u_n}\,\,\,\forall n \in {\mathbb{N}^*}\end{array}\)
=> Luôn đúng
Đặt \(f\left(x\right)=x^n+\left(m+1\right)x-1\)
Hàm \(f\left(x\right)\) liên tục trên R
\(\lim\limits_{x\rightarrow-\infty}f\left(x\right)=\lim\limits_{x\rightarrow-\infty}\left(x^n-\left(m+1\right)x-1\right)=\lim\limits_{x\rightarrow-\infty}x^n\left(1-\dfrac{m+1}{x^{n-1}}-\dfrac{1}{x^n}\right)=-\infty< 0\)
\(\Rightarrow\) Luôn tồn tại một số thực \(a< 0\) sao cho \(f\left(a\right)< 0\)
\(\lim\limits_{x\rightarrow+\infty}f\left(x\right)=\lim\limits_{x\rightarrow+\infty}x^n\left(1-\dfrac{m+1}{x^{n-1}}-\dfrac{1}{x^n}\right)=+\infty>0\)
\(\Rightarrow\) Luôn tồn tại một số thực \(b>0\) sao cho \(f\left(b\right)>0\)
\(\Rightarrow f\left(a\right).f\left(b\right)< 0\Rightarrow f\left(x\right)\) luôn có ít nhất 1 nghiệm trên (a;b) hay pt đã cho luôn luôn có nghiệm
\(x_{n+1}=\dfrac{1}{2}x_n+2^{n-2}\Leftrightarrow x_{n+1}-\dfrac{1}{6}.2^{n+1}=\dfrac{1}{2}\left(x_n-\dfrac{1}{6}.2^n\right)\)
Đặt \(x_n-\dfrac{1}{6}.2^n=y_n\Rightarrow\left\{{}\begin{matrix}y_1=x_1-\dfrac{1}{6}.2^1=\dfrac{8}{3}\\y_{n+1}=\dfrac{1}{2}y_n\end{matrix}\right.\)
\(\Rightarrow y_n\) là CSN với công bội \(q=\dfrac{1}{2}\)
\(\Rightarrow y_n=\dfrac{8}{3}.\left(\dfrac{1}{2}\right)^{n-1}=\dfrac{4}{3.2^n}\)
\(\Rightarrow x_n=y_n+\dfrac{1}{6}.2^n=\dfrac{4}{3.2^n}+\dfrac{2^n}{6}\)
Giả sử trong dãy ko có lũy thừa bậc 2 của số tự nhiên nào \(\Rightarrow\) toàn bộ các số trong dãy phải nằm giữa 2 số chính phương liên tiếp
\(\Rightarrow k^2+1\le n< n+1< ...< 2n< \left(k+1\right)^2\)
\(\Rightarrow2\left(k^2+1\right)< \left(k+1\right)^2\)
\(\Leftrightarrow k^2-2k+1< 0\)
\(\Leftrightarrow\left(k-1\right)^2< 0\) (vô lý)
Vậy điều giả sử là sai hay trong dãy luôn có ít nhất 1 số là lũy thừa bậc 2 của số tự nhiên
Tks