K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Bài 1: Cho dãy số (un) được xác định như sau: Un = n2 + (n+1)2  + (n+2)2 + (n + 3)2Với n =1,2 3,… Tìm tất cả các số hạng của dãy số chia hết cho 10.Bài 2: Cho dãy số được xác định bởi:  \(\hept{\begin{cases}A_0=0\\a_{n+1}=\frac{n\left(n+1\right)}{\left(n+2\right)\left(n+3\right)}\end{cases}.\left(a_n+1\right)}\) với n là số tự nhiên khác 0.a)     Tính an với n =1,2,3,4,5,6. (kết quả viết dưới dạng phân số)b)   ...
Đọc tiếp

Bài 1: Cho dãy số (un) được xác định như sau: Un = n2 + (n+1)+ (n+2)2 + (n + 3)2

Với n =1,2 3,… Tìm tất cả các số hạng của dãy số chia hết cho 10.

Bài 2: Cho dãy số được xác định bởi:  \(\hept{\begin{cases}A_0=0\\a_{n+1}=\frac{n\left(n+1\right)}{\left(n+2\right)\left(n+3\right)}\end{cases}.\left(a_n+1\right)}\)

 với n là số tự nhiên khác 0.

a)     Tính an với n =1,2,3,4,5,6. (kết quả viết dưới dạng phân số)

b)    Tính a2012 (Lấy kết quả đúng)

( Gợi ý: - Nhân cả tử và mẫu của a2 với cùng 1 số rồi tách tử và mẫu thành tích, tương tự với a3. Từ đó tìm CTTQ của an)

Bài 3:

Cho dãy số xác định bởi: \(\hept{\begin{cases}U_1=\sqrt{2}\\U_{n+1}=\sqrt{2^{U_n}}\end{cases}}\)  Với n là số tự nhiên khác 0. Tính U2003.

Bài 4: Tính giá trị biểu thức A biết: \(A=\sqrt{2007+\sqrt{2007+...+\sqrt{2007}}}\)  (n dấu căn)

0
11 tháng 2 2016

Tui ms học lp 7 ==

10 tháng 2 2017

điền hết dấu cộng vào ta được: 1+2+3+4+5+6+7+8+9=45

nếu thay +a thành -a thì giá trị của tổng giảm đi 2a (chẵn)

do vậy tổng cuối luôn là 1 số lẻ, mà 10 là số chẵn nên không có phép thay nào thỏa mãn

26 tháng 7 2016

Sao mà khó dữ...Hừm cho nghĩ một lát nha.ha

26 tháng 7 2016

a) Phân tích được x3(x2 - 7)2 – 36x = x(x + 1 )( x - 1 )(x - 3)(x + 2)(x - 2)( x + 3)

b) Theo phần a ta có :

A = n3(n2 - 7)2 - 36n = n(n + 1)(n - 1) (n - 3)(n + 2)(n - 2)(n + 3)

Đây là tích của 7 số nguyên liên tiếp. Trong 7 số nguyên liên tiếp có:

- Một bội của 2 nên A chia hết cho 2.

- Một bội của 3 nên A chia hết cho 3.

- Một bội của 5 nên A chia hết cho 5.

- Một bội của 7 nên A chia hết cho 7.

Mà 2; 3; 5; 7 đôi một nguyên tố cùng nhau nên: A chia hết cho (2; 3; 5;7)

Hay A chia hết cho 210.