Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\left(x+1\right).\left(x+2\right).\left(x+3\right)...\left(x+2016\right)=2016\)
\(A=x\left(1+2+3+...+2016\right)=2016\)
\(A=x\cdot\frac{\left(2016+1\right).2016}{2}=x\cdot2033136=2016\)
\(\Rightarrow x=2016:2033136=\frac{2}{2017}\)
\(\Rightarrow\frac{2}{2017}< \frac{1}{2015}\)
\(\Rightarrow x< \frac{1}{2015}\)
\(x\left(x+1\right)\left(x+2\right)\left(x+3\right)\cdot\cdot\cdot\left(x+2017\right)=2017\) \(\left(\text{Có }\left(2017-1\right)\text{ : }1+1+1=2018\right)\)
\(\text{Vì }\text{tích trên là tích của 2018 số hạng mà có kết quả = 2017 là số nguyên}>0\text{ }\Rightarrow\text{ }x>0\left(x\in Z\right)\)
\(\text{Mà }\frac{1}{2016!}< 1\)
\(\text{Và số nguyên bé nhất lớn hơn 0 là 1 }\)
\(\Rightarrow\text{ }x>\frac{1}{2016!}\)
\(\text{Mình nghĩ chắc là sai rồi ! Mình cũng đang bận !}\)
Ta có \(x=\dfrac{2016}{x\times\left(x+1\right)\times\left(x+2\right)\times........\times\left(x+2016\right)}\)
\(\dfrac{1}{2015!}=\dfrac{2016}{2016!}=\dfrac{2016}{1\times2\times...........\times2016}\)
Vì x > 0=> \(\left(x+1\right)\times\left(x+2\right)\times...\times\left(x+2016\right)>1\times2\times...\times2016\)
\(\Rightarrow\dfrac{1}{\left(x+1\right)\times\left(x+2\right)\times.......\times\left(x+2016\right)}< \dfrac{1}{1\times2\times..........\times2016}\)\(\Rightarrow\dfrac{2016}{\left(x+1\right)\times\left(x+2\right)\times.......\times\left(x+2016\right)}< \dfrac{2016}{1\times2\times......\times2016}\)
\(\Leftrightarrow x< \dfrac{1}{2015!}\)(đpcm)
Ta có \(x=\dfrac{2016}{\left(x+1\right)\times\left(x+2\right)\times....\times\left(x+2016\right)}\)
\(\dfrac{1}{2015!}=\dfrac{2016}{2016!}=\dfrac{2016}{1\times2\times.....\times2016}\)
Vì x>0=>(x+1)×(x+2)×.............×(x+2016) >\(1\times2\times.....\times2016\)
\(\Rightarrow\dfrac{1}{\left(x+1\right)\times\left(x+2\right)\times......\times\left(x+2016\right)}>\dfrac{1}{1\times2\times......\times2016}\)
\(\Rightarrow\dfrac{2016}{\left(x+1\right)\times\left(x+2\right)\times......\times\left(x+2016\right)}>\dfrac{2016}{1\times2\times......\times2016}\)
\(\Leftrightarrow x< \dfrac{1}{2015!}\)(đpcm)
P \(=\left(1-\frac{1}{2^2}\right).\left(1-\frac{1}{3^2}\right).\left(1-\frac{1}{4^2}\right)...\left(1-\frac{1}{50^2}\right)\)
P\(=\frac{2^2-1}{2^2}.\frac{3^2-1}{3^2}.\frac{4^2-1}{4^2}...\frac{50^2-1}{50^2}\)
P \(=\frac{1.3}{2.2}.\frac{2.4}{3.3}.\frac{3.5}{4.4}...\frac{49.51}{50.50}\)
P\(=\frac{\left(1.2.3...49\right).\left(3.4.5...51\right)}{\left(2.3.4...50\right).\left(2.3.4...50\right)}\)
P\(=\frac{1.51}{50.2}=\frac{51}{100}\)