K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

31 tháng 10 2021

a: Xét (O) có

ΔBDC nội tiếp đường tròn

BC là đường kính

Do đó: ΔBDC vuông tại D

Xét (O) có

ΔBEC nội tiếp đường tròn

BC là đường kính

Do đó: ΔBEC vuông tại E

1.Cho tam giác ABC vuông tại A (ab<AC) cso AH là đường cao. Biết BH=9cmHC=16cma. Tính AH,ACM số đo góc ABCB. Gọi M là trung điểm của BC đường vuông góc với BC tại M cắt đường thẳng AC và BA theo thứ tự E và F. Chứng minh BH.BF=MB.ABC. Gọi I là trung điểm của È.chứng minh IA là bán kính của đường tròn tâm I bán KÍNH IFD. Chứng minh MA là tiếp tuyến của đường tòn tâm Ibán kính IF2. Cho tam giấc ABC nội...
Đọc tiếp

1.Cho tam giác ABC vuông tại A (ab<AC) cso AH là đường cao. Biết BH=9cmHC=16cm
a. Tính AH,ACM số đo góc ABC
B. Gọi M là trung điểm của BC đường vuông góc với BC tại M cắt đường thẳng AC và BA theo thứ tự E và F. Chứng minh BH.BF=MB.AB
C. Gọi I là trung điểm của È.chứng minh IA là bán kính của đường tròn tâm I bán KÍNH IF
D. Chứng minh MA là tiếp tuyến của đường tòn tâm Ibán kính IF
2. Cho tam giấc ABC nội tiếp đường tròn (o) đườn kính BC. Vẽ dây AD của (o) vuông góc với đường kính BC tại H. Gọi M là trung điểm của cạnh AC.Từ M vẽ đường thẳng vuông góc với OC, đường thẳng này cắt OI tại N trên tia ON lấy điểm S sao cho N là trung điểm của cạnh OS
A. Chứng minh tam giác ABC vuông tại A và HA=HD
B. Chứng minh MN//SC và SC là tiếp tuyến của đường trong (O)
c. Gọi K là trung điểm của cạnh HC vẽ đương tròn đường lính AH cắt cạnh AK tại F chứng minh BH. HC= À. AK 
D. T rên tia đối của tia BA lấy điểm E sao hco B là trung điểm của cạnh AE chứng minh E,H,F thẳng hàng
GIÚP MÌNH VỚI!!!

1
18 tháng 12 2016

tớ ko biết

28 tháng 7 2018

Mình tích rồi

14 tháng 5 2017

đt simson

15 tháng 11 2023

 Gọi T là giao điểm của CD và AB. Khi đó xét tứ giác ACHT, ta có:

O (trung điểm AC), D (giao điểm của 2 đường chéo) và B (giao điểm của 2 đường thẳng chứa 2 cạnh đối) thẳng hàng nên ACHT là hình thang. (bổ đề hình thang quen thuộc)

 \(\Rightarrow\) HT//AC \(\Rightarrow\) H, K, T thẳng hàng.

 Lại có \(\widehat{CEH}=\widehat{CAH}\) (góc nội tiếp cùng chắn cung AH)

 Mà \(\widehat{CAH}=\widehat{B}\) (cùng phụ với góc C)

 \(\Rightarrow\widehat{CEH}=\widehat{B}\)

 \(\Rightarrow\) Tứ giác BTEH nội tiếp \(\Rightarrow\widehat{BEH}=\widehat{BTH}\)

Mà \(\widehat{BTH}=90^o\) nên \(\widehat{BEH}=90^o\). Ta có đpcm.

19 tháng 4 2020

C S N I M O K F A B D H

haizzz , vì mới lớp 8 nên mình chỉ làm được đến câu c, thôi , bạn thông cảm

a, Xét tam giác ABC vuông tại A và HA = HD

- Có \(\widehat{BAC}\)là góc nội tiếp đường tròn O chắn cung BC

- Mà BC là đường kính O

=> \(\widehat{BAC}=90^o\)

=> \(\Delta ABC\perp A\)

Xét \(\Delta OAD\)cân tại O ( Vì OA = OD do A , D cung thuộc O )

- Có AH là đường cao

=> OH là đường trung tuyến \(\Delta OAD\)

=> H là trug điểm AD

=> HA = HD

b, MN // SC , SC tiếp tuyến của (O)

Xét tam giác OSC có : M là trung điểm của OC

                                     N là trung điểm của OS

=> MN là đường TB của \(\Delta OSC\)

=> MN // SC

Mà \(MN\perp OC\left(gt\right)\)

\(\Rightarrow OC\perp SC\)tại S

- Xét đường tròn O có CO là bán kính ( vì \(C\in\left(O\right)\)

\(CO\perp SC\)tại C
=> SC là tiếp tuyến của đường tròn (O)

c, BH .  HC = AF . AK

Xét \(\Delta ABC\perp A\)có :

AH là đường cao 

=> AH2 = BH . HC

Xét đường tròn đường kính AH có F thuộc đường tròn

\(\Rightarrow\widehat{AFH}=90^o\)

\(\Rightarrow HF\perp AK\)tại F

Xét tam giác AHK vuông tại H , ta có : 

HF là đường cao 

=> AH2 = AF . AK

=> BH . HC = AF . AK ( = AH2 )

19 tháng 4 2020

GARENA FREE FIRE

25 tháng 3 2018

a, ta có: góc AEI = 90o (góc nội tiếp chắn nửa đường tròn) => EI\(\perp\)AK tại E và AH\(\perp\)KI tại H (gt)

chúng cắt nhau tại B => B là trực tâm. => KB vuông góc AI (đpm)

b, ta có: góc ECA = góc EBA ( cùng chắn cung AE) mà góc EBA= góc HBI (hai góc đối đỉnh) (4)

ta lại có: góc HBI + góc HIB =90o (tổng 3 góc trong một tam giác) (3)

=> góc ECA + góc HIB = 90o (1)

Xét tam giác CEI vuông tại E nên: góc EKI + góc HIB =90o (2)

Từ (1) và (2) => góc ECA = góc EKI 

=> tứ giác EKNC là tứ giác nội tiếp ) (đpcm)

c,Ta có: góc EAB + góc EBA = 90và từ (3), (4) => góc EAB = góc BIH

mà góc EAB = góc BEN ( bằng 1/2 sđ cung EB)

=> góc BIH = góc BEN=> tam giác ENI cân tại N=> EN =NI (*)

Tương tự, ta có góc K + góc KAH = 90o

góc KEN + góc NEB =90o mà góc KAH = góc NEB (c.m.t)  => góc KEN = góc K   => tam giác KNE cân tại N => NK = NE (**)

từ (*) và (**) => NK = NI hay N là trung điểm KI ( đpcm)

20 tháng 1 2018
CÁC BẠN GIÚP MÌNH VỚI