Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A B C D I E
CM: a) Xét tam giác ABI và tam giác ADI
có AB = AD (gt)
góc BAI = góc IAD (gt)
AI : chung
=> tam giác ABI = tam giác ADI (c.g.c)
=> BI = ID (hai cạnh tương ứng)
b) Ta có: tam giác ABI = tam giác ADI (cmt)
=> góc ABI = góc ADI (hai góc tương ứng) (1)
Mà góc ABI + góc IBE = 1800 (2)
góc ADI + góc IDC = 1800 (3)
Từ (1), (2),(3) suy ra góc IBE = góc IDC
Xét tam giác IBE và tam giác IDC
có góc EIB = góc DIC (đối đỉnh)
IB = ID (cmt)
góc IBE = góc IDC (cmt)
=> tam giác IBE = tam giác IDC
c,d tự làm
Bài 5:
Tgiac ABC vuông cân tại A => góc CBA = 45 độ
Xét góc CBA là góc ngoài tgiac DBC => góc CBA = góc D + DCB
Xét tgiac DBC có DB = BC => tgiac DBC cân tại B => góc D = góc DBC
=> góc D = 45/2 = 22,5 độ
và góc ACD = 22,5 + 45 = 67,5 độ
Vậy số đo các góc của tgiac ACD là ...
Bài 6:
Tgiac ABC cân tại B, góc B = 100 độ => góc A = góc C = 40 độ
Xét tgiac ABD có AB = AD => tgiac ABD cân tại A => góc EDB (ADB) = (180-40)/2 =70 độ
cmtt với tgiac CBE => góc DEB = 70 độ
=> góc DBE = 180-70-70 = 40 độ
Bài 7:
Xét tgiac ABC cân tại A => góc BAC = 180 - 2.góc C => 2.(90 - góc C)
Xét tgiac BHC vuông tại H => góc CBH = 90 - góc C
=> đpcm
Bài 8: mai làm hihi
a: Xét ΔBAD và ΔBKD có
BA=BK
\(\widehat{ABD}=\widehat{KBD}\)
BD chung
Do đó: ΔBAD=ΔBKD
Suy ra: \(\widehat{BAD}=\widehat{BKD}=90^0\)
hay DK\(\perp\)BC
b: Xét ΔBEC có BE=BC
nên ΔBEC cân tại B
mà BI là đường phân giác
nên BI là đường cao
Đề bài kiểu gì thế? Lê Thanh Thúy
a) Xét 2 \(\Delta\) \(ABI\) và \(DBI\) có:
\(AB=DB\left(gt\right)\)
\(\widehat{ABI}=\widehat{DBI}\) (vì \(BI\) là tia phân giác của \(\widehat{B}\))
Cạnh BI chung
=> \(\Delta ABI=\Delta DBI\left(c-g-c\right)\)
=> \(IA=ID\) (2 cạnh tương ứng).
b) Xem lại đề.
c) Theo câu a) ta có \(\Delta ABI=\Delta DBI.\)
=> \(\widehat{BAI}=\widehat{BDI}\) (2 góc tương ứng).
Mà \(\widehat{BAI}=90^0\left(gt\right)\)
=> \(\widehat{BAI}=\widehat{BDI}=90^0.\)
Xét 2 \(\Delta\) vuông \(IAE\) và \(IDC\) có:
\(\widehat{EAI}=\widehat{CDI}=90^0\)
\(IA=ID\left(cmt\right)\)
\(\widehat{AIE}=\widehat{DIC}\) (vì 2 góc đối đỉnh)
=> \(\Delta IAE=\Delta IDC\) (cạnh góc vuông - góc nhọn kề).
b) Vì \(BI\) là tia phân giác của \(\widehat{B}\left(gt\right)\)
=> \(BH\) là tia phân giác của \(\widehat{B}.\)
Theo câu c) ta có \(\Delta IAE=\Delta IDC.\)
=> \(AE=DC\) (2 cạnh tương ứng).
Ta có:
\(\left\{{}\begin{matrix}BA+AE=BE\\BD+DC=BC\end{matrix}\right.\)
Mà \(\left\{{}\begin{matrix}BA=BD\left(gt\right)\\AE=DC\left(cmt\right)\end{matrix}\right.\)
=> \(BE=BC.\)
=> \(\Delta EBC\) cân tại B.
Có \(BH\) là đường phân giác (cmt).
=> \(BH\) đồng thời là đường cao của \(\Delta EBC.\)
=> \(BH\perp CE\left(đpcm\right).\)
Chúc bạn học tốt!