Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, Vì \(\widehat{ADH}=\widehat{AEH}=\widehat{DAE}=90^0\) nên ADHE là hcn
Do đó AH=DE
A B C H E F
a) Sử dụng hệ thức lượng trong các tam giác vuông ABH; ACH và ABC
\(AB.BE=BH^2;AC.CF=CH^2\)
\(AB^2=BH.BC;AC^2=CH.BC\)
=> \(\frac{AB^3}{AC^3}=\frac{BE}{CF}\)
<=> \(\frac{AB^4}{AC^4}=\frac{BE.AB}{CF.AC}=\frac{BH^2}{CH^2}\)
<=> \(\frac{AB^2}{AC^2}=\frac{BH}{CH}\)
<=> \(\frac{BH.BC}{CH.BC}=\frac{BH}{CH}\)
<=> \(\frac{BH}{CH}=\frac{BH}{CH}\) đúng
Vậy ta có điều phải chứng minh là đúng
b)
Ta có: \(AH^2=BH.CH\)
=> \(AH^4=BH^2.CH^2=BE.AB.CF.AC=BE.CF.AB.AC=BE.CF.AH.BC\)
=> \(AH^3=BC.BE.CF\)
c)
Xét tam giác vuông BEH và tam giác vuông HFC
có: ^EBH =^FHC ( cùng phụ góc FCH)
=> Tam giác BEH đồng dạng tam giác HFC
=> \(\frac{BE}{HF}=\frac{EH}{FC}\Rightarrow BE.FC=EH.FH\)
=> \(AH^3=BC.HE.HF\)
a) Ta có: \(\angle HEA=\angle HFA=\angle EAF=90\Rightarrow AEHF\) là hình chữ nhật
\(\Delta AHB\) vuông tại H có HE là đường cao \(\Rightarrow AE.AB=AH^2\)
\(\Delta AHC\) vuông tại H có HF là đường cao \(\Rightarrow AF.AC=AH^2\)
\(\Rightarrow AE.AB=AF.AC\)
b) \(\Delta ABC\) vuông tại A có đường cao AH \(\Rightarrow\left\{{}\begin{matrix}AB^2=BH.BC\\AC^2=CH.BC\end{matrix}\right.\)
\(\Rightarrow AB^2-AC^2=BH.BC-CH.BC=BC\left(BH-CH\right)\)
\(=\left(BH+CH\right)\left(BH-CH\right)=BH^2-CH^2\)
c) Ta có: \(\dfrac{1}{HF^2}-\dfrac{1}{CH^2}=\dfrac{1}{AF.FC}-\dfrac{1}{CA.CF}=\dfrac{1}{CF}\left(\dfrac{1}{AF}-\dfrac{1}{CA}\right)\)
\(=\dfrac{1}{CF}.\dfrac{CF}{AF.AC}=\dfrac{1}{AH^2}\)
Lại có: \(\dfrac{1}{HE^2}-\dfrac{1}{BH^2}=\dfrac{1}{BE.EA}-\dfrac{1}{BE.BA}=\dfrac{1}{BE}\left(\dfrac{1}{EA}-\dfrac{1}{BA}\right)\)
\(=\dfrac{1}{BE}.\dfrac{BE}{EA.BA}=\dfrac{1}{AH^2}\)
\(\Rightarrow\dfrac{1}{HF^2}-\dfrac{1}{CH^2}=\dfrac{1}{HE^2}-\dfrac{1}{BH^2}\Rightarrow\dfrac{1}{BH^2}-\dfrac{1}{CH^2}=\dfrac{1}{HE^2}-\dfrac{1}{HF^2}\)
d) Ta có: \(AH^4=\left(AH^2\right)^2=\left(BH.CH\right)^2=BH^2.CH^2\)
\(=BE.BA.CF.CA=BE.CF.\left(AB.AC\right)=BE.CF.AH.BC\)
\(\Rightarrow BC.BE.CF=AH^3\)
e) Ta có: \(AE.BE+AF.CF=EH^2+HF^2=EF^2=AH^2=BH.CH\)
f) Ta có: \(3AH^2+BE^2+CF^2=3AH^2+BH^2-EH^2+CH^2-HF^2\)
\(=3AH^2+BH^2+CH^2-\left(EH^2+HF^2\right)\)
\(=3AH^2+BH^2+CH^2-EF^2=3AH^2+BH^2+CH^2-AH^2\)
\(=BH^2+CH^2+2AH^2=BH^2+CH^2+2BH.CH\)
\(=\left(BH+CH\right)^2=BC^2\)
a: \(\widehat{C}=30^0\)
AB=4cm
\(AC=4\sqrt{3}\left(cm\right)\)
bạn tự vẽ hình nha ^.^
trong tam giác vuông ABC có \(AH^2=BH\cdot CH\) \(\Rightarrow AH^4=BH^2\cdot CH^2\)
ma \(HB^2=BE\cdot AB,HC^2=FC\cdot AC\)
suy ra \(AH^4=BE\cdot AB\cdot FC\cdot AC\)
nhung \(AB\cdot AC=AH\cdot BC\)
nen \(AH^4=BE\cdot FC\cdot AH\cdot BC\Rightarrow AH^3=BE\cdot FC\cdot BC\)(1)
de dang chung minh duoc tam giac BEH ~tam giac HFC
suy ra\(\frac{BE}{HF}=\frac{EH}{FC}\Rightarrow BE\cdot FC=EH\cdot HF\)thay vao (1) ta cung co dpcm
a: \(AH=\dfrac{9\cdot12}{15}=7.2\left(cm\right)\)
CH=5,4(cm)
a)Áp dụng hệ thức lượng trong tam giác vuông có:
\(AH^2=AE.AB\)
\(AH^2=AF.AC\)
\(\Rightarrow AE.AB=AF.AC\)
b)(\(\dfrac{BE}{CF}\) chứ)
Áp dụng hệ thức lượng trong tam giác vuông có:
\(AB^2=BH.BC\)
\(AC^2=CH.BC\)
\(\Rightarrow\dfrac{AB^2}{AC^2}=\dfrac{BH}{CH}\)\(\Leftrightarrow\dfrac{AB^4}{AC^4}=\dfrac{BH^2}{CH^2}=\dfrac{BE.AB}{CF.AC}\)
\(\Leftrightarrow\dfrac{BE}{CF}=\left(\dfrac{AB}{AC}\right)^3\)
c)Áp dụng định lý Thales có:
\(\dfrac{BH}{BC}=\dfrac{BE}{BA}\Leftrightarrow BA.BH=BE.BC\)
\(\dfrac{CF}{CA}=\dfrac{CH}{BC}\Leftrightarrow CF.BC=CA.CH\)
\(\Rightarrow BA.CA.BH.CH=BE.CF.BC^2\)
\(\Leftrightarrow AH.BC.AH^2=BC^2.BE.BF\)
\(\Leftrightarrow BC^..BE.BF=AH^3\)
Vậy ....
a) Xét \(\Delta AHB\) vuông tại H có \(HE\bot AB\Rightarrow AE.AB=AH^2\)
Xét \(\Delta AHC\) vuông tại H có \(HF\bot AC\Rightarrow AF.AC=AH^2\)
\(\Rightarrow AE.AB=AF.AC\)
b) sửa đề: \(\dfrac{BE}{CF}=\left(\dfrac{AB}{AC}\right)^3\)
Dễ dàng chứng minh được EHAF là hình chữ nhật (có 3 góc vuông)
Ta có: \(\dfrac{AB^2}{AC^2}=\dfrac{BH.BC}{CH.BC}=\dfrac{BH}{CH}\)
Vì \(HF\parallel AB\) \(\Rightarrow\angle EBH=\angle FHC\)
Xét \(\Delta BEH\) và \(\Delta HFC:\) Ta có: \(\left\{{}\begin{matrix}\angle BEH=\angle HFC=90\\\angle EBH=\angle FHC\end{matrix}\right.\)
\(\Rightarrow\Delta BEH\sim\Delta HFC\left(g-g\right)\Rightarrow\dfrac{HB}{HC}=\dfrac{HE}{CF}\)
\(\Rightarrow\dfrac{AB^3}{AC^3}=\dfrac{EH}{CF}.\dfrac{AB}{AC}=\dfrac{HE.AB}{AC.CF}\left(1\right)\)
Vì \(HE\parallel AC\) \(\Rightarrow\dfrac{AB}{AC}=\dfrac{BE}{HE}\Rightarrow BE=\dfrac{AB}{AC}.HE\left(2\right)\)
Thế (2) vào (1) \(\Rightarrow\dfrac{BE}{CF}=\left(\dfrac{AB}{AC}\right)^3\)
c) Ta có: \(AH^4=\left(AH^2\right)^2=\left(BH.CH\right)^2=BH^2.CH^2\)
\(=BE.BA.CF.CA=BE.CF.AH.BC\left(AB.AC=AH.BC\right)\)
\(\Rightarrow AH^3=BE.CF.BC\)
c) Vì tam giác ABC vuông tại A \(\Rightarrow AMHN\) là hình chữ nhật
Ta có: \(\dfrac{S_{BMNC}}{S_{ABC}}=\dfrac{S_{ABC}-S_{AMN}}{S_{ABC}}=1-\dfrac{S_{AMN}}{S_{ABC}}\)
Ta có: \(\dfrac{S_{AMN}}{S_{ABC}}=\dfrac{\dfrac{1}{2}.AM.AN}{\dfrac{1}{2}.AB.AC}=\dfrac{AM.AN}{AB.AC}=\dfrac{AM.AB.AN.AC}{\left(AB.AC\right)^2}\)
\(=\dfrac{AH^2.AH^2}{\left(AH.BC\right)^2}=\dfrac{AH^4}{\left(AH.BC\right)^2}=\dfrac{AH^2}{BC^2}\)
Ta có \(\dfrac{1}{AH^2}=\dfrac{1}{AB^2}+\dfrac{1}{AC^2}=\dfrac{1}{6^2}+\dfrac{1}{8^2}\Rightarrow AH=\dfrac{24}{5}\left(cm\right)\)
\(BC=\sqrt{AB^2+AC^2}=\sqrt{6^2+8^2}=10\)
\(\Rightarrow\dfrac{S_{AMN}}{S_{ABC}}=\dfrac{\left(\dfrac{24}{5}\right)^2}{10^2}=\dfrac{144}{625}\Rightarrow\dfrac{S_{BMNC}}{S_{ABC}}=1-\dfrac{144}{625}=\dfrac{481}{625}\)
d) Ta có: \(\angle ANH+\angle AMH=90+90=180\Rightarrow AMHN\) nội tiếp
\(\Rightarrow\angle ANM=\angle AHM=\angle ABC\left(=90-\angle BHM\right)\)
\(\Rightarrow BMNC\) nội tiếp
\(\Rightarrow\) 4 đường trung trực của các đoạn thẳng BM,MN,NC,CB đồng quy
cho mình hỏi là câu d bài này có cách nào khác cách tứ giác nội tiếp không ?
Lời giải:
a. Áp dụng HTL trong tam giác vuông ta có:
$AE.AB=AH^2$
$AF.AC=AH^2$
$\Rightarrow AE.AB=AF.AC\Rightarrow \frac{AE}{AF}=\frac{AC}{AB}$
Xét tam giác $AFE$ và $ABC$ có:
$\widehat{EAF}=\widehat{CAB}=90^0$
$\frac{AE}{AF}=\frac{AC}{AB}$ (cmt)
$\Rightarrow \triangle AFE\sim \triangle ABC$ (c.g.c)
b.
Áp dụng HTL trong tam giác vuông:
$BE.BA=BH^2$
$CF.CA=CH^2$
$\Rightarrow BE.CF.AB.AC=(BH.CH)^2=(AH^2)^2$
$\Leftrightarrow BE.CF.2S_{ABC}=AH^4$
$\Leftrightarrow BE.CF.AH.BC=AH^4$
$\Leftrightarrow BE.CF.BC=AH^3$ (đpcm)
Hình vẽ: