K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 8 2015

a) Hai tam giác = nhau theo trường hợp cạnh huyền góc nhọn (tự c/m)

b) Từ 2 tam giác = nhau ở phần a => AD= DE

Ta có tam giác ADF =  tam giác EDC theo trường hợp góc cạnh góc (tự c/m)

=> DF= DC ( 2 cạnh tg ứng)

c) Xét tam giác ADF, có : góc A= 90 độ

=> DF là cạnh lớn nhất (quan hệ giữa góc và cạnh đối diện)

=> AD  < DF 

Mà DF= DC (chứng minh b)

=> AD < DC (đpcm)

5 tháng 8 2015

b) Xét tam giác ADF và tam giác EDC, có: 

Góc A= góc E (=90 độ)

AD= AE (vừa mình đã ns rồi) 

Góc ADF= góc EDC (đối đỉnh)

Từ 3 điều trên => tam  giác ADF =  tam giác EDC (g-c-g)

=> DF= DC (2 cạnh tg ứng)

6 tháng 6 2017

a)xét tam giác ABD và tam giác EBD,ta có:

góc DEB= góc DAB(=90 độ)

góc EBD=ABD(BD là p/g)

BD chung

Vậy tam giác ABD=tam giác EBD(CẠNH HUYỀN CẠNH GÓC NHỌN)

=>AD=EB

b)xét tam giác ADF và ECD,ta có:

góc CED=FAD(= 90 độ)

DE=DA(cmt)

góc CDE=FDA(đối đỉnh)

=>tam giác ADF=ECD(g.c.g)

=>DF=DC(...)

c)xét tam giácvuông ADF ta có

FD là cạnh huyền

=>AD<FD

có FD=CD(cmt)

=>AD<DC

CHÚC BẠN HỌC TỐT!

a) Xét ΔABD vuông tại A và ΔEBD vuông tại E có 

BD chung

\(\widehat{ABD}=\widehat{EBD}\)(BD là tia phân giác của \(\widehat{ABE}\))

Do đó: ΔABD=ΔEBD(cạnh huyền-góc nhọn)

b) Ta có: ΔABD=ΔEBD(cmt)

nên BA=BE(Hai cạnh tương ứng)

Xét ΔABE có BA=BE(cmt)

nên ΔBAE cân tại B(Định nghĩa tam giác cân)

c) Ta có: ΔABD=ΔEBD(cmt)

nên DA=DE(hai cạnh tương ứng)

Xét ΔADF vuông tại A và ΔEDC vuông tại E có 

DA=DE(cmt)

\(\widehat{ADF}=\widehat{EDC}\)(hai góc đối đỉnh)

Do đó: ΔADF=ΔEDC(cạnh góc vuông-góc nhọn kề)

Suy ra: DF=DC(hai cạnh tương ứng)

a.Ta có:

⎧⎪⎨⎪⎩BA=BEˆABD=ˆDBEchungBD→ΔABD=ΔEBD(c.g.c){BA=BEABD^=DBE^chungBD→ΔABD=ΔEBD(c.g.c)

b.Từ câu a→ˆBED=ˆBAD=90o→BED^=BAD^=90o

→DE⊥BC→DE⊥BC

c.Ta có:

ˆBKD+ˆADK=ˆACB+ˆDEC=90oBKD^+ADK^=ACB^+DEC^=90o

→ˆBKD=ˆACB→BKD^=ACB^

→ΔBDK=ΔBDC(g.c.g)→ΔBDK=ΔBDC(g.c.g)

→BK=BC→BK=BC

image  

2:

a: Xét ΔBAD vuông tại A và ΔBED vuông tại E có

BD chung

góc ABD=góc EBD

=>ΔBAD=ΔBED

b: Xét ΔDAK vuông tại A và ΔDEC vuông tại E có

DA=DE

góc ADK=góc EDC

=>ΔDAK=ΔDEC
=>DK=DC

=>ΔDKC cân tại D

1 tháng 5 2019

a, Xét tam giác ABD vuông tại A và tam giác EBD vuông tại E ta có:

BD:cạnh chung; góc ABD= góc EBD(gt)

Do đó tam giác ABD=tam giác EBD(cạnh huyền - góc nhọn)

=> AB=EB; AD=ED(cặp cạnh tương ứng)

Vì AB=EB; AD=ED nên B là D nằm trên đường trung trực của AE

=> BD là đường trung trực của AE(đpcm)

b, Xét tam giác ADF và tam giác EDC ta có:

góc FAD=góc CED(=90độ);AD=ED(cmt); góc ADF=góc EDC(đối đỉnh)

Do đó tam giác ADF=tam giác EDC(g.c.g)

=> DF=DC(cặp cạnh tương ứng) (đpcm)

c, Xét tam giác DEC vuông tại E ta có:

DE<DC(do trong tam giác vuông cạnh huyền lớn nhất)

mà DE=DA=> DA<DC(đpcm)

d, Vì tam giác ADF=tam giác EDC(cm câu b)

=> AF=EC(cặp cạnh tương ứng)

Ta có: BF=BA+AF; BC=BE+EC

mà BA=BE;AF=EC(đã cm)

=> BF=BC

=> tam giác BCF cân tại B

mặc khác ta có: BA=BE(cm câu a)

=> tam giác ABE cân tại B

Xét tam giác BCF và tam giác ABE cân tại B ta có:

góc BAE=\(\dfrac{180^o-\text{góc}ABE}{2}\) ;góc BFC=\(\dfrac{180^o-\text{góc}FBC}{2}\)

=> góc BAE=góc BFC

=> AE//CF(do có 1 cặp góc bằng nhau ở vị trí đồng vị) (đpcm)

15 tháng 2 2021

san8iiiiii